A075190 Numbers k such that k^2 is an interprime = average of two successive primes.
2, 3, 8, 9, 12, 15, 18, 21, 25, 33, 41, 51, 60, 64, 72, 78, 92, 112, 117, 129, 138, 140, 159, 165, 168, 172, 192, 195, 198, 213, 216, 218, 228, 237, 273, 295, 298, 303, 304, 309, 322, 327, 330, 338, 342, 356, 360, 366, 387, 393, 408, 416, 429, 432, 441, 447, 456
Offset: 1
Keywords
Examples
3 is a term because 3^2 = 9 is the average of two successive primes 7 and 11.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1317 from Zak Seidov)
Crossrefs
Programs
-
Maple
s := 2: for n from 2 to 1000 do if prevprime(n^s)+nextprime(n^s)=2*n^s then print(n) else; fi; od;
-
Mathematica
PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; Select[ Range[464], 2#^2 == PrevPrim[ #^2] + NextPrim[ #^2] &] (* Robert G. Wilson v, Sep 14 2002 *) n2ipQ[n_]:=Module[{n2=n^2},(NextPrime[n2]+NextPrime[n2,-1])/2==n2]; Select[Range[500],n2ipQ] (* Harvey P. Dale, May 04 2011 *) Select[Sqrt[Mean[#]]&/@Partition[Prime[Range[30000]],2,1],IntegerQ] (* Harvey P. Dale, May 26 2013 *)
Formula
a(n) = sqrt(A069495(n)).
Extensions
Edited by Robert G. Wilson v, Sep 14 2002
Comments