A075233 Numbers k such that k^10 is an interprime = average of two successive primes.
9, 42, 87, 105, 108, 141, 144, 166, 215, 250, 381, 387, 482, 490, 500, 645, 748, 792, 831, 860, 876, 968, 990, 1377, 1448, 1468, 1526, 1769, 1780, 1922, 1968, 2084, 2118, 2228, 2245, 2252, 2373, 2381, 2478, 2565, 2672, 2781, 2883, 2915, 2972, 2988, 3008
Offset: 1
Keywords
Examples
9 is a term because 9^10 = 3486784401 is the average of two successive primes 3486784393 and 3486784409.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
s := 10: for n from 2 to 1000 do if prevprime(n^s)+nextprime(n^s)=2*n^s then print(n) else; fi; od;
-
Mathematica
Select[Range[3087], 2#^10 == NextPrime[#^10, -1] + NextPrime[#^10] &] Select[Range[3100],With[{c=#^10},c==Mean[{NextPrime[c],NextPrime[c,-1]}]]&] (* Harvey P. Dale, May 21 2025 *)
Extensions
Edited by Robert G. Wilson v Sep 14 2002
Comments