cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075246 y-value of the solution (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and having the largest z-value. The x and z components are in A075245 and A075247.

Original entry on oeis.org

4, 3, 4, 7, 15, 7, 10, 16, 34, 13, 18, 29, 61, 21, 30, 46, 96, 31, 43, 67, 139, 43, 60, 92, 190, 57, 78, 121, 249, 73, 100, 154, 316, 91, 124, 191, 391, 111, 154, 232, 474, 133, 181, 277, 565, 157, 99, 326, 664, 183, 248, 379, 771, 211, 286, 436, 886, 241, 326
Offset: 3

Views

Author

T. D. Noe, Sep 10 2002

Keywords

Comments

See A073101 for more details.
See A257840 for a variant that differs from a(89) on. - M. F. Hasler, Jul 03 2022

Crossrefs

Cf. A073101 (number of solutions), A075245 (x values), A075247 (z values), A192787 (number of solutions with x <= y <= z), A257840 (variant: lex earliest solution, not largest z).

Programs

  • Maple
    A075246:=proc() local t, n,a,b,t1,largey,largez; for n from 3 to 100 do t:=4/n; largez:=0; largey:=0; for a from floor(1/t)+1 to floor(3/t) do t1:=t - 1/a; for b from max(a,floor(1/t1)+1) to floor(2/(t1)) do if and(type(1/(t1 - 1/b),integer),alargez then largez:=(1/(t1 - 1/b)); largey:=b; end if end if end do; end do; lprint(n, largey) end do; end proc; # [program derived from A192787] Patrick J. McNab, Aug 20 2014
  • Mathematica
    For[xLst={}; yLst={}; zLst={}; n=3, n<=100, n++, cnt=0; xr=n/4; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(4/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(4/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]; y++ ]; x++ ]]; yLst
  • PARI
    apply( {A075246(n, c=1, a, t)=for(x=n\4+1, 3*n\4, for(y=max(1\t=4/n-1/x, x)+1, ceil(2/t)-1, t-1/y >= c && break; numerator(t-1/y)==1 && [c, a]=[t-1/y, y])); a}, [3..99]) \\ M. F. Hasler, Jul 03 2022