A075247 Largest possible z-value of an integer solution (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z. The x and y components are in A075245 and A075246.
12, 6, 20, 42, 210, 42, 90, 240, 1122, 156, 468, 812, 3660, 420, 510, 2070, 9120, 930, 1806, 4422, 19182, 1806, 2100, 8372, 35910, 3192, 9048, 14520, 61752, 5256, 9900, 23562, 99540, 8190, 22940, 36290, 152490, 12210, 6314, 53592, 224202, 17556
Offset: 3
Examples
For n = 6 we have a(n) = 42 the largest possible z in a solution of 4/n = 2/3 = 1/x + 1/y + 1/z with 0 < x < y < z in the integers. Indeed, from 1/x < 2/3 < 3/x we have 3/2 < x < 9/2. For x = 2 we get 2/y > 2/3 - 1/2 = 1/6 > 1/y <=> 6 < y < 12, and each of these y except y = 11 yields a solution, with z = 42, 24, 18, 15 and 12. There are no other possible z values: x = 3 gives 2/y > 1/3 <=> y < 6 and indeed y = 4 gives a solution with z = 12, no solution for y = 5; finally, x = 4 gives 2/y > 5/12 <=> y < 24/5, impossible with y > x.
Links
- M. F. Hasler, Table of n, a(n) for n = 3..2000
Crossrefs
Programs
-
Maple
A075247:= proc () local t, n, a, b, t1, largey, largez; for n from 3 to 100 do t := 4/n; largez := 0; for a from floor(1/t)+1 to floor(3/t) do t1 := t-1/a; for b from max(a, floor(1/t1)+1) to floor(2/t1) do if `and`(type(1/(t1-1/b), integer), a < b, b < 1/(t1-1/b)) then if largez < 1/(t1-1/b) then largez := 1/(t1-1/b) end if end if end do end do; lprint(n, largez) end do end proc; # [program derived from A192787] Patrick J. McNab, Aug 20 2014
-
Mathematica
For[xLst={}; yLst={}; zLst={}; n=3, n<=100, n++, cnt=0; xr=n/4; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(4/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(4/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]; y++ ]; x++ ]]; zLst
-
PARI
apply( {A075247(n, c=1, t)=for(x=n\4+1, 3*n\4, for(y=max(1\t=4/n-1/x, x)+1, ceil(2/t)-1, t-1/y >= c && break; numerator(t-1/y)==1 && c=t-1/y)); 1/c}, [3..99]) \\ M. F. Hasler, Jul 02 2022
Comments