A075251 z-value of the solution (x,y,z) to 5/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and having the largest z-value. The x and y components are in A075249 and A075250.
6, 20, 6, 12, 70, 72, 342, 42, 99, 156, 780, 1806, 156, 272, 1564, 1332, 5852, 420, 945, 4070, 6670, 14520, 930, 1560, 2970, 7140, 30450, 1806, 1736, 16800, 26796, 56882, 3192, 5256, 29304, 23256, 97656, 5256, 11439, 16002, 75078, 157212, 8190, 13340
Offset: 3
Programs
-
Mathematica
For[xLst={}; yLst={}; zLst={}; n=3, n<=100, n++, cnt=0; xr=n/5; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(5/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(5/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]; y++ ]; x++ ]]; zLst
Comments