cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075298 Inverted (definition in A075193) generalized tribonacci numbers A001644.

Original entry on oeis.org

1, 1, -5, 5, 1, -11, 15, -3, -23, 41, -21, -43, 105, -83, -65, 253, -271, -47, 571, -795, 177, 1189, -2161, 1149, 2201, -5511, 4459, 3253, -13223, 14429, 2047, -29699, 42081, -10335, -61445, 113861, -62751, -112555, 289167, -239363, -162359, 690889, -767893, -85355, 1544137, -2226675, 597183, 3173629
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 13 2002

Keywords

Comments

a(n) = -C(n+1), C(n)=reflected generalized tribonacci numbers A073145.

Crossrefs

Programs

  • GAP
    a:=[1,1,-5];; for n in [4..50] do a[n]:=-a[n-1]-a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+2*x-3*x^2)/(1+x+x^2-x^3) )); // G. C. Greubel, Apr 09 2019
    
  • Mathematica
    CoefficientList[Series[(1+2x-3x^2)/(1+x+x^2-x^3), {x, 0, 50}], x]
  • PARI
    my(x='x+O('x^50)); Vec((1+2*x-3*x^2)/(1+x+x^2-x^3)) \\ G. C. Greubel, Apr 09 2019
    
  • Sage
    ((1+2*x-3*x^2)/(1+x+x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Apr 09 2019
    

Formula

a(n) = -a(n-1) - a(n-2) + a(n-3), a(0)=1, a(1)=1, a(2)=-5.
G.f.: (1+2*x-3*x^2)/(1+x+x^2-x^3).
a(n) = A078046(n) + 3*A078046(n-1). - R. J. Mathar, Sep 20 2020