cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A075418 Sum of generalized tribonacci numbers A001644 and inverted tribonacci numbers A075298.

Original entry on oeis.org

4, 2, -2, 12, 12, 10, 54, 68, 108, 282, 422, 772, 1604, 2674, 5006, 9580, 16884, 31506, 58606, 105948, 196508, 362298, 662022, 1222772, 2249116, 4127210, 7605718, 13984148, 25701652, 47311458, 86994846, 159975004, 294336612, 541281698, 995529822, 1831291692, 3367998380, 6194717674
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 14 2002

Keywords

Comments

It seems that aside from a(2) the sequence is nonnegative.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2-4*x^3-x^4+x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[(4+2x-6x^2-6x^3+2x^4+4x^5)/(1-x^2-4x^3-x^4+x^6), {x, 0, 40}], x]
  • PARI
    my(x='x+O('x^40)); Vec((4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2 -4*x^3-x^4+x^6)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    ((4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2-4*x^3-x^4+x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = a(n-2) + 4*a(n-3) + a(n-4) - a(n-6), a(0)=4, a(1)=2, a(2)=-2, a(3)=12, a(4)=12, a(5)=10.
O.g.f.: (4 + 2*x - 6*x^2 - 6*x^3 + 2*x^4 + 4*x^5)/(1 - x^2 - 4*x^3 - x^4 + x^6).

A075495 Convolution of A075298 with A056594.

Original entry on oeis.org

1, 1, -6, 4, 7, -15, 8, 12, -31, 29, 10, -72, 95, -11, -160, 264, -111, -311, 682, -484, -505, 1673, -1656, -524, 3857, -4987, 602, 8240, -13825, 6189, 15872, -35888, 26209, 25553, -87654, 88308, 24903, -200863, 264264, -38500, -426623, 729389, -341270, -814744, 1885407, -1411931, -1288224
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 2x - 3x^2)/(1 + x + 2x^2 + x^4 - x^5), {x, 0, 50}], x]

Formula

a(n) = -a(n-1) - 2a(n-2) - a(n-4) + a(n-5); a(0)=1, a(1)=1, a(2)=-6, a(3)=4, a(4)=7.
G.f.: (1 + 2x - 3x^2)/(1 + x + 2x^2 + x^4 - x^5).
Showing 1-2 of 2 results.