A075318 Pair the odd numbers such that the k-th pair is (r, r+2k) where r is the smallest odd number not included earlier: (1,3),(5,9),(7,13),(11,19),(15,25),(17,29),(21,35),(23,39),(27,45),... This is the sequence of the second member of pairs.
3, 9, 13, 19, 25, 29, 35, 39, 45, 51, 55, 61, 67, 71, 77, 81, 87, 93, 97, 103, 107, 113, 119, 123, 129, 135, 139, 145, 149, 155, 161, 165, 171, 177, 181, 187, 191, 197, 203, 207, 213, 217, 223, 229, 233, 239, 245, 249, 255, 259, 265, 271, 275, 281, 285, 291, 297
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Fibonacci representations, Fib. Quart. 10 (1972), 1-28.
Programs
-
Magma
[2*Floor(n*((1+Sqrt(5))/2)^2)-1: n in [1..60]]; // Vincenzo Librandi, Sep 08 2016
-
Maple
A075318 := proc(nmax) local r,k,a,pairs ; a := [3] ; pairs := [1,3] ; k := 2 ; r := 5 ; while nops(a) < nmax do while r in pairs do r := r+2 ; od ; if r+2*k in pairs then printf("inconsistency",k) ; fi ; a := [op(a),r+2*k] ; pairs := [op(pairs),r,r+2*k] ; k := k+1 ; od ; RETURN(a) ; end: a := A075318(200) : for n from 1 to nops(a) do printf("%d,",op(n,a)) ; od ; # R. J. Mathar, Nov 12 2006
-
Mathematica
Table[2 Floor[n ((1 + Sqrt[5]) / 2)^2] - 1, {n, 60}] (* Vincenzo Librandi, Sep 08 2016 *) 2*Floor[Range[60]GoldenRatio^2]-1 (* Harvey P. Dale, Feb 08 2020 *)
-
PARI
a(n)=localbitprec(logint(sqrtint(45*n^4)+5*n^2,2)+2); 2*floor(n*(sqrt(5)+1)/2+n)-1 \\ Charles R Greathouse IV, Sep 09 2016
-
Python
from math import isqrt def A075318(n): return (n+isqrt(5*n**2)&-2)+(n<<1)-1 # Chai Wah Wu, Aug 16 2022
Formula
a(n) = 2*floor(n*phi^2)-1, where phi=(1+sqrt(5))/2. - Michel Dekking, Sep 08 2016
Extensions
More terms from R. J. Mathar, Nov 12 2006
Comments