cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075318 Pair the odd numbers such that the k-th pair is (r, r+2k) where r is the smallest odd number not included earlier: (1,3),(5,9),(7,13),(11,19),(15,25),(17,29),(21,35),(23,39),(27,45),... This is the sequence of the second member of pairs.

Original entry on oeis.org

3, 9, 13, 19, 25, 29, 35, 39, 45, 51, 55, 61, 67, 71, 77, 81, 87, 93, 97, 103, 107, 113, 119, 123, 129, 135, 139, 145, 149, 155, 161, 165, 171, 177, 181, 187, 191, 197, 203, 207, 213, 217, 223, 229, 233, 239, 245, 249, 255, 259, 265, 271, 275, 281, 285, 291, 297
Offset: 1

Views

Author

Amarnath Murthy, Sep 14 2002

Keywords

Comments

(A075317(n),a(n)) = (2*A(n)-1, 2*B(n)-1), where A and B are the basic Wythoff sequences A(n)=A000201(n) and B(n)=A001950(n). For a proof, see section 2 of the Carlitz et al. paper. - Michel Dekking, Sep 08 2016

Crossrefs

Programs

  • Magma
    [2*Floor(n*((1+Sqrt(5))/2)^2)-1: n in [1..60]]; // Vincenzo Librandi, Sep 08 2016
    
  • Maple
    A075318 := proc(nmax) local r,k,a,pairs ; a := [3] ; pairs := [1,3] ; k := 2 ; r := 5 ; while nops(a) < nmax do while r in pairs do r := r+2 ; od ; if r+2*k in pairs then printf("inconsistency",k) ; fi ; a := [op(a),r+2*k] ; pairs := [op(pairs),r,r+2*k] ; k := k+1 ; od ; RETURN(a) ; end: a := A075318(200) : for n from 1 to nops(a) do printf("%d,",op(n,a)) ; od ; # R. J. Mathar, Nov 12 2006
  • Mathematica
    Table[2 Floor[n ((1 + Sqrt[5]) / 2)^2] - 1, {n, 60}] (* Vincenzo Librandi, Sep 08 2016 *)
    2*Floor[Range[60]GoldenRatio^2]-1 (* Harvey P. Dale, Feb 08 2020 *)
  • PARI
    a(n)=localbitprec(logint(sqrtint(45*n^4)+5*n^2,2)+2); 2*floor(n*(sqrt(5)+1)/2+n)-1 \\ Charles R Greathouse IV, Sep 09 2016
    
  • Python
    from math import isqrt
    def A075318(n): return (n+isqrt(5*n**2)&-2)+(n<<1)-1 # Chai Wah Wu, Aug 16 2022

Formula

a(n) = 2*floor(n*phi^2)-1, where phi=(1+sqrt(5))/2. - Michel Dekking, Sep 08 2016

Extensions

More terms from R. J. Mathar, Nov 12 2006