A075366 Smallest product (n+1)(n+2)...(n+k) that is divisible by the product of all the primes up to n.
1, 12, 120, 30, 30240, 5040, 17297280, 2162160, 240240, 360360, 28158588057600, 2346549004800, 64764752532480000, 4626053752320000, 308403583488000, 19275223968000, 830034394580628357120000, 46113021921146019840000
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..300
Programs
-
Haskell
a075366 n = a075366_list !! (n-1) a075366_list = 1 : f 2 1 a000040_list where f x pp ps'@(p:ps) | p <= x = f x (p * pp) ps | otherwise = g $ dropWhile (< pp) $ scanl1 (*) [x+1, x+2 ..] where g (z:zs) | mod z pp == 0 = z : f (x + 1) pp ps' | otherwise = g zs -- Reinhard Zumkeller, May 18 2015
-
Mathematica
a75365[n_] := Module[{div, k, pr}, div=Times@@Prime/@Range[PrimePi[n]]; For[k=0; pr=1, True, k++; pr*=n+k, If[Mod[pr, div]==0, Return[k]]]]; a[n_] := Times@@Range[n+1, n+a75365[n]]
Formula
If p <= n < q, where p and q are consecutive primes, then a(n) = (2p)!/n!, unless n=10.
Extensions
Edited by Dean Hickerson, Oct 28 2002