A075365 Smallest k such that (n+1)(n+2)...(n+k) is divisible by the product of all the primes up to n.
0, 2, 3, 2, 5, 4, 7, 6, 5, 5, 11, 10, 13, 12, 11, 10, 17, 16, 19, 18, 17, 16, 23, 22, 21, 20, 19, 18, 29, 28, 31, 30, 29, 28, 27, 26, 37, 36, 35, 34, 41, 40, 43, 42, 41, 40, 47, 46, 45, 44, 43, 42, 53, 52, 51, 50, 49, 48, 59, 58, 61, 60, 59, 58, 57, 56, 67, 66, 65, 64, 71, 70
Offset: 1
Keywords
Examples
a(6) = 4 as (6+1)*(6+2)*(6+3)*(6+4) is divisible by 2*3*5 but (6+1)*(6+2)*(6+3) is not.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Programs
-
Mathematica
a[n_] := Module[{div, k, pr}, div=Times@@Prime/@Range[PrimePi[n]]; For[k=0; pr=1, True, k++; pr*=n+k, If[Mod[pr, div]==0, Return[k]]]]
Formula
If p <= n < q, where p and q are consecutive primes, then a(n) = 2p-n, unless n=10. Sketch of proof: a(n) >= 2p-n, to make (n+1)...(n+a(n)) divisible by p. If r is a prime less than p and r does not divide (n+1)...(2p), then r > 2p-n and 2r <= n, so 4p < 3n < 3q. But q/p is known to be < 4/3 for all primes p >= 11.
Extensions
Edited by Dean Hickerson, Oct 28 2002