A075410 a(n) is the smallest m such that n!!-m and n!!+m are both primes.
0, 0, 3, 2, 5, 2, 5, 8, 7, 4, 19, 16, 29, 68, 97, 16, 109, 86, 19, 158, 17, 172, 41, 16, 529, 106, 263, 212, 163, 302, 593, 302, 607, 262, 311, 428, 227, 106, 1271, 8, 229, 386, 1489, 32, 47, 1996, 1097, 2566, 41, 632, 1913, 458, 149, 1244, 2837, 362, 3317, 908
Offset: 2
Keywords
Examples
a(4) = 3 because 4!! = 8 and 8 -/+ 3 = 5 and 11 are primes with smallest equal distances from 4!!
Programs
-
Mathematica
smbp[n_]:=Module[{m=0,n2=n!!},While[Total[Boole[PrimeQ[n2+{m,-m}]]] != 2,m++];m]; Array[smbp,60,2] (* Harvey P. Dale, Sep 02 2017 *)
Extensions
More terms from David Wasserman, Jan 17 2005
Comments