cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075418 Sum of generalized tribonacci numbers A001644 and inverted tribonacci numbers A075298.

Original entry on oeis.org

4, 2, -2, 12, 12, 10, 54, 68, 108, 282, 422, 772, 1604, 2674, 5006, 9580, 16884, 31506, 58606, 105948, 196508, 362298, 662022, 1222772, 2249116, 4127210, 7605718, 13984148, 25701652, 47311458, 86994846, 159975004, 294336612, 541281698, 995529822, 1831291692, 3367998380, 6194717674
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 14 2002

Keywords

Comments

It seems that aside from a(2) the sequence is nonnegative.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2-4*x^3-x^4+x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[(4+2x-6x^2-6x^3+2x^4+4x^5)/(1-x^2-4x^3-x^4+x^6), {x, 0, 40}], x]
  • PARI
    my(x='x+O('x^40)); Vec((4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2 -4*x^3-x^4+x^6)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    ((4+2*x-6*x^2-6*x^3+2*x^4+4*x^5)/(1-x^2-4*x^3-x^4+x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = a(n-2) + 4*a(n-3) + a(n-4) - a(n-6), a(0)=4, a(1)=2, a(2)=-2, a(3)=12, a(4)=12, a(5)=10.
O.g.f.: (4 + 2*x - 6*x^2 - 6*x^3 + 2*x^4 + 4*x^5)/(1 - x^2 - 4*x^3 - x^4 + x^6).