A075466 Trajectory of 266718 under the Reverse and Add! operation carried out in base 4, written in base 10.
266718, 1017375, 2019150, 4934715, 20413980, 34239885, 64220175, 127195950, 321080475, 1286586060, 2154739965, 4288508415, 8571775230, 21401016315, 85781907180, 149736661725, 278082371775, 1369020907200, 1433193762225
Offset: 0
Examples
266718 (decimal) = 1001013132 -> 1001013132 + 2313101001 = 3320120133 = 1017375 (decimal).
Links
Programs
-
Mathematica
NestWhileList[# + IntegerReverse[#, 4] &, 266718, # != IntegerReverse[#, 4] &, 1, 23] (* Robert Price, Oct 18 2019 *)
-
PARI
{m=266718; stop=19; c=0; while(c
0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}
Formula
a(0), ..., a(18) as above; a(19) = 2780823717750; a(20) = 5492189757120; a(21) = 5749636151985; a(22) = 11156010444150; a(23) = 21968759028480; a(24) = 22226205423345; a(25) = 44109148986870; for n > 25 and n = 2 (mod 6): a(n) = 5*4^(2*k+14)-83865605*4^k where k = (n-2)/6; n = 3 (mod 6): a(n) = 5*4^(2*k+14)+3941683435*4^k-15 where k = (n-3)/6; n = 4 (mod 6): a(n) = 10*4^(2*k+14)+2515968150*4^k-10 where k = (n-4)/6; n = 5 (mod 6): a(n) = 20*4^(2*k+14)-335462420*4^k where k = (n-5)/6; n = 0 (mod 6): a(n) = 20*4^(2*k+14)+3690086620*4^k-15 where k = (n-6)/6; n = 1 (mod 6): a(n) = 40*4^(2*k+14)+2012774520*4^k-10 where k = (n-7)/6. G.f.: -15*(47049901525664*x^11+23708157972464*x^10+23433347158016*x^9-46912496118440*x^8-23502049861628*x^7-23433347158016*x^6-11908468626600*x^5-6137441522940*x^4-5862630708480*x^3+11771063219370*x^2+5931333412095*x+5862630708480)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))
Comments