cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075467 Trajectory of 270798 under the Reverse and Add! operation carried out in base 4, written in base 10.

Original entry on oeis.org

270798, 1005135, 1994670, 5058075, 20047500, 33313725, 66545850, 112201785, 225464610, 368353785, 835135950, 1587633825, 2841028950, 5347819200, 5598498225, 10862757750, 21453946560, 22456662705, 43576370550
Offset: 0

Views

Author

Klaus Brockhaus, Sep 18 2002

Keywords

Comments

The base 4 trajectory of 270798 = A075421(370) provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. - The generating function given describes the sequence from a(11) onward; the g.f. for the complete sequence is known but nearly twice as big.

Examples

			270798 (decimal) = 1002013032 -> 1002013032 + 2303102001 = 3311121033 = 1005135 (decimal).
		

Crossrefs

Programs

  • Mathematica
    NestWhileList[# + IntegerReverse[#, 4] &, 270798,  # !=
    IntegerReverse[#, 4] &, 1, 23] (* Robert Price, Oct 18 2019 *)
  • PARI
    {m=270798; stop=20; c=0; while(c0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}

Formula

a(0), ..., a(10) as above; for n > 10 and n = 5 (mod 6): a(n) = 5*4^(2*k+10)+15341035*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 10*4^(2*k+10)+9792150*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 20*4^(2*k+10)-1305620*4^k where k = (n-1)/6; n = 2 (mod 6): a(n) = 20*4^(2*k+10)+14361820*4^k-15 where k = (n-2)/6; n = 3 (mod 6): a(n) = 40*4^(2*k+10)+7833720*4^k-10 where k = (n-3)/6; n = 4 (mod 6): a(n) = 80*4^(2*k+10)-1305620*4^k where k = (n-4)/6. G.f.: -15*(1426085120*x^11+749251744*x^10+419191024*x^9-1430263104*x^8-715827880*x^7-369055228*x^6-352343296*x^5-222825800*x^4-155978060*x^3+356521280*x^2+189401930*x+105842255)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))