A076483 a(n) = n!*Sum_{k=1..n} (k-1)^k/k!.
0, 0, 1, 11, 125, 1649, 25519, 458569, 9433353, 219117905, 5677963451, 162457597961, 5087919552253, 173136159558361, 6361282619516343, 250987334850557369, 10584205713321808529, 475079402305823570849, 22614513693572549266291, 1137911105533216112417161
Offset: 0
Keywords
Examples
a(4) = 4!*(0^1/1! + 1^2/2! + 2^3/3! + 3^4/4!) = 0 + 12 + 32 + 81 = 125.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..386
Programs
-
Mathematica
Table[n! Sum[(k-1)^k/k!, {k,n}], {n,0,17}] (* Stefano Spezia, Sep 11 2022 *)
-
PARI
a(n) = n!*sum(k=1, n, (k-1)^k/k!); \\ Seiichi Manyama, Jul 15 2023
Formula
Limit_{n->oo} a(n)/(e*a(n-1)) - n = -1/2.
Limit_{n->oo} a(n)/n^n = 1/(e-1).
Comments