cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075504 Stirling2 triangle with scaled diagonals (powers of 9).

Original entry on oeis.org

1, 9, 1, 81, 27, 1, 729, 567, 54, 1, 6561, 10935, 2025, 90, 1, 59049, 203391, 65610, 5265, 135, 1, 531441, 3720087, 1974861, 255150, 11340, 189, 1, 4782969, 67493007, 57041334, 11160261, 765450, 21546, 252, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(9*z) - 1)*x/9) - 1.
Row sums give A075508(n), n >= 1. The columns (without leading zeros) give A001019 (powers of 9), A076008-A076013 for m=1..7.

Examples

			[1]; [9,1]; [81,27,1]; ...; p(3,x) = x(81 + 27*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*       1
*       9        1
*      81       27        1
*     729      567       54        1
*    6561    10935     2025       90      1
*   59049   203391    65610     5265    135     1
*  531441  3720087  1974861   255150  11340   189   1
* 4782969 67493007 57041334 11160261 765450 21546 252 1
(End)
		

Crossrefs

Columns 2-7 are A076008-A076013.

Programs

  • Mathematica
    Flatten[Table[9^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(9^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (9^(n-m)) * stirling2(n, m).
a(n, m) = Sum_{p=0..m-1} (A075513(m, p)*((p+1)*9)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 9m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-9k*x), m >= 1.
E.g.f. for m-th column: (((exp(9x) - 1)/9)^m)/m!, m >= 1.