A075504 Stirling2 triangle with scaled diagonals (powers of 9).
1, 9, 1, 81, 27, 1, 729, 567, 54, 1, 6561, 10935, 2025, 90, 1, 59049, 203391, 65610, 5265, 135, 1, 531441, 3720087, 1974861, 255150, 11340, 189, 1, 4782969, 67493007, 57041334, 11160261, 765450, 21546, 252, 1
Offset: 1
Examples
[1]; [9,1]; [81,27,1]; ...; p(3,x) = x(81 + 27*x + x^2). From _Andrew Howroyd_, Mar 25 2017: (Start) Triangle starts * 1 * 9 1 * 81 27 1 * 729 567 54 1 * 6561 10935 2025 90 1 * 59049 203391 65610 5265 135 1 * 531441 3720087 1974861 255150 11340 189 1 * 4782969 67493007 57041334 11160261 765450 21546 252 1 (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Programs
-
Mathematica
Flatten[Table[9^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
-
PARI
for(n=1, 11, for(m=1, n, print1(9^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
Formula
a(n, m) = (9^(n-m)) * stirling2(n, m).
a(n, m) = Sum_{p=0..m-1} (A075513(m, p)*((p+1)*9)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 9m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-9k*x), m >= 1.
E.g.f. for m-th column: (((exp(9x) - 1)/9)^m)/m!, m >= 1.
Comments