cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A075521 Primes p such that 4*p + (p mod 4) is also a prime.

Original entry on oeis.org

7, 11, 13, 19, 31, 37, 47, 59, 67, 73, 97, 107, 151, 179, 193, 227, 271, 277, 307, 331, 359, 367, 373, 409, 433, 439, 467, 487, 499, 571, 577, 587, 599, 647, 673, 691, 709, 719, 839, 853, 907, 991, 997, 1019, 1031, 1033, 1039, 1093, 1129, 1187, 1259, 1279
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 19 2002

Keywords

Comments

A075522(a(n)) > 1.
A010051(A075520(A049084(a(n)))) = 1. [Reinhard Zumkeller, Feb 20 2012]

Examples

			11 is a term as 4*11+(11 mod 4) = 44+3 = 47 is prime.
		

Programs

  • Haskell
    a075521 n = a075521_list !! (n-1)
    a075521_list = map a000040 $ filter ((== 1) . a010051' . a075520) [1..]
    -- Reinhard Zumkeller, Feb 20 2012
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[4*# + Mod[#, 4]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)

A075523 First nonprime reached when starting with the n-th prime p and iterating the map k -> 4*k+(p mod 4), or -1 if no integer is ever reached.

Original entry on oeis.org

10, 15, 21, 511, 767, 213, 69, 319, 95, 117, 511, 597, 165, 175, 767, 213, 959, 245, 4351, 287, 1173, 319, 335, 357, 1557, 405, 415, 1727, 437, 453, 511, 527, 549, 559, 597, 2431, 629, 655, 671, 693, 46079, 725, 767, 3093, 789, 799, 847, 895, 3647, 917
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 19 2002

Keywords

Crossrefs

Showing 1-2 of 2 results.