cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075525 Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*t^n/n! = ((1+t)*(1+t^2)*(1+t^3)...)^u.

Original entry on oeis.org

1, 1, 1, 8, 3, 1, 6, 35, 6, 1, 144, 110, 95, 10, 1, 480, 1594, 585, 205, 15, 1, 5760, 8064, 8974, 1995, 385, 21, 1, 5040, 125292, 70252, 35329, 5320, 658, 28, 1, 524160, 684144, 1178540, 392364, 110649, 12096, 1050, 36, 1, 2177280, 14215536, 10683180, 7260560, 1630125, 295113, 24570, 1590, 45, 1
Offset: 1

Views

Author

Vladeta Jovovic, Oct 11 2002

Keywords

Comments

Also the Bell transform of A265024. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Examples

			Triangle begins:
      1;
      1,      1;
      8,      3,     1;
      6,     35,     6,     1;
    144,    110,    95,    10,    1;
    480,   1594,   585,   205,   15,   1;
   5760,   8064,  8974,  1995,  385,  21,  1;
   5040, 125292, 70252, 35329, 5320, 658, 28, 1;
  ...
exp(Sum_{n>0} u*A000593(n)*t^n/n) = 1 + u*t/1! + (u+u^2)*t^2/2! + (8*u+3*u^2+u^3)*t^3/3! + (6*u+35*u^2+6*u^3+u^4)*t^4/4! + ...  - _Seiichi Manyama_, Nov 08 2020.
		

Crossrefs

Column k=1..3 give A265024, A338787, A338788.

Programs

  • Maple
    # Adds (1,0,0,0,...) as row 0.
    seq(PolynomialTools[CoefficientList](n!*coeff(series(mul((1+z^k)^u, k=1..20),z,20),z,n),u), n=0..9); # Peter Luschny, Jan 26 2016
  • Mathematica
    T[n_, k_] := n! SeriesCoefficient[(Times @@ (1 + t^Range[n]))^u, {t, 0, n}, {u, 0, k}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 04 2019 *)
  • PARI
    a(n) = if(n<1, 0, (n-1)!*sumdiv(n, d, (-1)^(d+1)*n/d));
    T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1))) \\ Seiichi Manyama, Nov 08 2020 after Peter Luschny
  • Sage
    # uses[bell_matrix from A264428]
    # Adds (1,0,0,0,..) as row 0.
    d = lambda n: sum((-1)^(d+1)*n/d for d in divisors(n))
    bell_matrix(lambda n: factorial(n)*d(n+1), 9) # Peter Luschny, Jan 26 2016
    

Formula

Row sums give n!*A000009(n).
From Seiichi Manyama, Nov 08 2020: (Start)
E.g.f.: exp(Sum_{n>0} u*A000593(n)*t^n/n).
T(n; u) = Sum_{k=1..n} T(n, k)*u^k is given by T(n; u) = u * (n-1)! * Sum_{k=1..n} A000593(k)*T(n-k; u)/(n-k)!, T(0; u) = 1. (End)
T(n, k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} A000593(i_j)/i_j. - Seiichi Manyama, Nov 09 2020.