cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075535 a(1)=1, a(n) = Sum_{k=1..n-1} min(a(k), a(n-k)).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 14, 18, 22, 28, 34, 42, 50, 61, 72, 86, 100, 118, 136, 158, 180, 208, 236, 270, 304, 346, 388, 438, 488, 549, 610, 682, 754, 840, 926, 1026, 1126, 1244, 1362, 1498, 1634, 1792, 1950, 2130, 2310, 2518, 2726, 2962, 3198, 3468, 3738, 4042
Offset: 1

Views

Author

Benoit Cloitre, Jan 11 2003

Keywords

Comments

Sequence gives 1/2 of the number of unique path partitions of the integer 2n; see the function w(n) as defined in the paper by Bessenrodt, Olsson, and Sellers.

Crossrefs

Cf. A033485.

Programs

  • Mathematica
    Fold[Append[#1, Total[Take[Flatten[Transpose[{#1, #1}]], #2]]] &, {1}, Range[53]] (* Birkas Gyorgy, Apr 18 2011 *)
    a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[Floor[n/2]]; Array[a, 100] (* T. D. Noe, Apr 18 2011 *)
  • PARI
    a(n)=if(n<3,1,a(n-1)+a(floor(n/2)))

Formula

a(1)=a(2)=1; a(2n) = a(2n-1) + a(n); a(2n+1) = a(2n) + a(n); for n >= 3, a(n) = a(n-1) + a(floor(n/2)).
Let T(x) be the g.f. 1 + x + 2*x^2 + 3*x^3 + ... (i.e., with offset 0), then T(x) = 1 + x * (1+x)/(1-x) * T(x^2). - Joerg Arndt, May 11 2010