cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075561 Domination number for kings' graph K(n).

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 9, 9, 9, 16, 16, 16, 25, 25, 25, 36, 36, 36, 49, 49, 49, 64, 64, 64, 81, 81, 81, 100, 100, 100, 121, 121, 121, 144, 144, 144, 169, 169, 169, 196, 196, 196, 225, 225, 225, 256, 256, 256, 289, 289, 289, 324, 324, 324, 361, 361, 361, 400, 400
Offset: 1

Views

Author

N. J. A. Sloane, Oct 16 2002

Keywords

Comments

Also the lower independence number of the n X n knight graph. - Eric W. Weisstein, Aug 01 2023

References

  • John J. Watkins, Across the Board: The Mathematics of Chessboard Problems, Princeton University Press, 2004, p. 102.

Crossrefs

Programs

  • Mathematica
    Table[Floor[(n + 2)/3]^2, {n, 50}] (* Vaclav Kotesovec, May 13 2012 *)
    LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 1, 1, 4, 4, 4, 9}, 20] (* Eric W. Weisstein, Jun 20 2017 *)
    CoefficientList[Series[(-1 - x^3)/((-1 + x)^3 (1 + x + x^2)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 20 2017 *)
  • PARI
    Vec(-x*(x+1)*(x^2-x+1)/((x-1)^3*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Oct 06 2014

Formula

a(n) = floor((n+2)/3)^2. - Vaclav Kotesovec, May 13 2012
G.f.: -x*(x+1)*(x^2-x+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Oct 06 2014
E.g.f.: exp(-x/2)*(exp(3*x/2)*(5 + 3*x*(3 + x)) + (6*x - 5)*cos(sqrt(3)*x/2) + sqrt(3)*(3 + 2*x)*sin(sqrt(3)*x/2))/27. - Stefano Spezia, Oct 17 2022
Sum_{n>=1} 1/a(n) = Pi^2/2 (A102753). - Amiram Eldar, Nov 03 2022

Extensions

More terms added from Vaclav Kotesovec, May 13 2012