cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075577 k^2 is a term if k^2 + (k-1)^2 and k^2 + (k+1)^2 are primes.

Original entry on oeis.org

4, 25, 625, 900, 1225, 4900, 7225, 10000, 12100, 50625, 52900, 67600, 81225, 84100, 102400, 152100, 168100, 225625, 240100, 245025, 265225, 348100, 462400, 483025, 504100, 562500, 577600, 714025, 902500, 1166400, 1210000, 1288225, 1380625, 1416100, 1428025
Offset: 1

Views

Author

Amarnath Murthy, Sep 25 2002

Keywords

Comments

For a(2) onwards, a(n) == 0 (mod 25).

Examples

			900 = 30^2 is a term because 30^2 + 29^2 = 1741 is prime and 30^2 + 31^2 = 1861 is prime.
		

Crossrefs

Cf. A109306.

Programs

  • Mathematica
    Do[s=n^2+(n-1)^2; s1=n^2+(n+1)^2; If[PrimeQ[s]&&PrimeQ[s1], Print[n^2]], {n, 1, 5000}]
  • Python
    from sympy import isprime
    def aupto(limit):
      alst, is2 = [], False
      for k in range(1, int(limit**.5) + 2):
        is1, is2 = is2, isprime(k**2 + (k+1)**2)
        if is1 and is2: alst.append(k**2)
      return alst
    print(aupto(1500000)) # Michael S. Branicky, Apr 25 2021

Formula

a(n) = A109306(n)^2. - David A. Corneth, Apr 25 2021

Extensions

More terms from Labos Elemer, Sep 27 2002
a(34) and beyond from Michael S. Branicky, Apr 25 2021