cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A075673 Sum of next n integer interprimes (cf. A024675).

Original entry on oeis.org

4, 15, 45, 111, 232, 422, 704, 1129, 1667, 2403, 3287, 4470, 5810, 7508, 9414, 11663, 14363, 17454, 20715, 24739, 29214, 33957, 39183, 45540, 52056, 59497, 67181, 75862, 84831, 95697, 106608, 117812, 130356, 143759, 158617, 174312, 190500
Offset: 1

Views

Author

Zak Seidov, Sep 24 2002

Keywords

Comments

Sum of next n primes is A007468. Sum of next n odd interprimes is A075674. Sum of next n even interprimes is A075675.

Examples

			a(1) = (3+5)/2 = 4; a(2) = (5+7)/2+(7+11)/2 = 15; a(3) = (11+13)/2+(13+17)/2 +(17+19)/2 = 45.
		

Crossrefs

Programs

  • Mathematica
    (* sum of next n integer interprimes*) i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; Table[Sum[(Prime[i+2]+Prime[i+1])/2, {i, i1, i2}], {n, 1, 40}]
    With[{nn=40},Total/@TakeList[Mean/@Partition[Prime[Range[2,(nn(nn+1))/2+2]],2,1],Range[nn]]] (* Harvey P. Dale, Feb 24 2023 *)

A075675 Sum of next n even interprimes.

Original entry on oeis.org

4, 18, 74, 182, 358, 746, 1176, 1854, 2650, 3870, 5696, 7358, 9818, 13052, 16134, 19742, 24192, 30048, 36306, 42932, 50954, 59904, 70210, 82646, 93446, 105640, 117558, 131950, 148108, 165772
Offset: 1

Views

Author

Zak Seidov, Sep 24 2002

Keywords

Comments

Sum of next n primes in A007468. Sum of next n integer interprimes in A075673. Sum of next n odd interprimes in A075674.

Examples

			a(1) = (3+5)/2 = 4; a(2) = (5+7)/2+(11+13)/2 = 6 + 12 = 18.
		

Crossrefs

Programs

  • Mathematica
    ev=Select[Table[(Prime[i]+Prime[i+1])/2, {i, 2, 2000}], EvenQ]; (* sum of next n even interprimes*) i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; A075675=Table[Sum[ev[[i]], {i, i1, i2}], {n, 30}]
    Module[{nn=1000,ip,len},ip=Select[Mean/@Partition[Prime[Range[nn]],2,1],EvenQ];len=Length[ip];Total/@TakeList[ip,Range[(Sqrt[1+8*len]-1)/2]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jun 30 2020 *)
Showing 1-2 of 2 results.