cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075707 Safe primes (A005385) (p and (p-1)/2 are primes) such that 12*p+1 is also prime.

Original entry on oeis.org

5, 23, 59, 83, 383, 479, 503, 719, 839, 863, 1619, 2039, 2099, 2579, 2819, 2879, 3023, 4139, 4259, 4679, 4703, 4919, 5879, 6719, 6779, 7559, 8039, 8783, 8819, 10799, 11279, 11423, 12203, 12659, 12899, 12983, 13523, 13799, 14159, 14303, 14699, 15683, 18119, 18443, 19259, 19379, 20183, 20663, 21059, 23663, 24083, 24239, 24659, 27239, 28163, 29123, 29339, 29483, 29759, 30803, 31139, 31583, 36923, 37463, 38603, 39119, 39503, 39839, 39983, 41879, 42299, 42443, 43403, 44519, 44939, 46679, 47339, 47819, 47963
Offset: 1

Views

Author

Jani Melik, Oct 02 2002

Keywords

Examples

			23 is a prime, so is (23-1)/2=11 and also 12*23+1=277, 59 is a prime, (59-1)/2=29 and 12*59+1=709, ...
		

Crossrefs

Programs

  • Maple
    ts_sgB_var_pras := proc(nmax) local i,tren,atek; tren := 0: for i from 1 to nmax do atek := numtheory[safeprime](i): if (atek > tren) then if (isprime(atek)='true' and isprime(6*atek+1)='true') then tren := atek: fi; fi; od; end: seq(ts_sgB_var_pras(i), i=1..3000);
  • Mathematica
    okQ[n_]:=PrimeQ[(n-1)/2]&&PrimeQ[12n+1]
    Select[Prime[Range[5000]],okQ] (* Harvey P. Dale, Nov 21 2010 *)

Extensions

More terms from Harvey P. Dale, Nov 21 2010