A075707 Safe primes (A005385) (p and (p-1)/2 are primes) such that 12*p+1 is also prime.
5, 23, 59, 83, 383, 479, 503, 719, 839, 863, 1619, 2039, 2099, 2579, 2819, 2879, 3023, 4139, 4259, 4679, 4703, 4919, 5879, 6719, 6779, 7559, 8039, 8783, 8819, 10799, 11279, 11423, 12203, 12659, 12899, 12983, 13523, 13799, 14159, 14303, 14699, 15683, 18119, 18443, 19259, 19379, 20183, 20663, 21059, 23663, 24083, 24239, 24659, 27239, 28163, 29123, 29339, 29483, 29759, 30803, 31139, 31583, 36923, 37463, 38603, 39119, 39503, 39839, 39983, 41879, 42299, 42443, 43403, 44519, 44939, 46679, 47339, 47819, 47963
Offset: 1
Keywords
Examples
23 is a prime, so is (23-1)/2=11 and also 12*23+1=277, 59 is a prime, (59-1)/2=29 and 12*59+1=709, ...
Programs
-
Maple
ts_sgB_var_pras := proc(nmax) local i,tren,atek; tren := 0: for i from 1 to nmax do atek := numtheory[safeprime](i): if (atek > tren) then if (isprime(atek)='true' and isprime(6*atek+1)='true') then tren := atek: fi; fi; od; end: seq(ts_sgB_var_pras(i), i=1..3000);
-
Mathematica
okQ[n_]:=PrimeQ[(n-1)/2]&&PrimeQ[12n+1] Select[Prime[Range[5000]],okQ] (* Harvey P. Dale, Nov 21 2010 *)
Extensions
More terms from Harvey P. Dale, Nov 21 2010