A075771 Let n^2 = q*prime(n) + r with 0 <= r < prime(n); then a(n) = q + r.
1, 2, 5, 4, 5, 12, 17, 10, 15, 16, 31, 36, 9, 28, 41, 48, 57, 24, 31, 50, 9, 16, 37, 48, 49, 76, 15, 42, 85, 116, 79, 114, 137, 52, 41, 96, 121, 148, 27, 52, 79, 144, 139, 16, 65, 136, 109, 84, 141, 220, 49, 86, 169, 166, 209, 254, 33, 124, 169, 240, 55, 48, 297, 66
Offset: 1
Keywords
Examples
6^2/p(6) = 36/13 = 2+10/13; a(6) = 2+10 = 12.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000
- C. Lawson-Perfect and D. Cushing, Integer Sequence Reviews: A075771, A032799, A002717, The Aperiodical, Aug. 6, 2016
Programs
-
Magma
[n^2-(NthPrime(n)-1)*Floor(n^2/NthPrime(n)): n in [1..70]]; // Vincenzo Librandi, Feb 18 2015
-
Mathematica
Table[n^2 - (Prime[n] - 1) Floor[n^2 / Prime[n]], {n, 80}] (* Vincenzo Librandi, Feb 18 2015 *)
-
PARI
a(n) = {my(sq = n^2); my(p = prime(n)); (sq % p) + sq\p;} \\ Michel Marcus, Feb 18 2015
-
PARI
A075771(n)=[1,1]*divrem(n^2,prime(n)) \\ M. F. Hasler, Nov 25 2016
Formula
a(n) = ds_prime(n)(n^2), where ds_prime(n) = digital sum base the n-th prime.
a(n) = n^2 - (prime(n)-1)*floor(n^2/prime(n)). For example, a(2) = ds_prime(2)(2^2) = ds_3(4) = 1 + 1 = 2; a(6) = ds_prime(6)(6^2) = ds_13(36) = 2 + 10 = 12.
Comments