cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075771 Let n^2 = q*prime(n) + r with 0 <= r < prime(n); then a(n) = q + r.

Original entry on oeis.org

1, 2, 5, 4, 5, 12, 17, 10, 15, 16, 31, 36, 9, 28, 41, 48, 57, 24, 31, 50, 9, 16, 37, 48, 49, 76, 15, 42, 85, 116, 79, 114, 137, 52, 41, 96, 121, 148, 27, 52, 79, 144, 139, 16, 65, 136, 109, 84, 141, 220, 49, 86, 169, 166, 209, 254, 33, 124, 169, 240, 55, 48, 297, 66
Offset: 1

Views

Author

Werner D. Sand, Oct 09 2002

Keywords

Comments

The digital sum (base the n-th prime) of n^2.
A lower bound is a(n) >= n^2/prime(n) ~ n/log(n log n). No term less than this can occur after index n, e.g., a(n) > 126 for n > 10^3 and a(n) > 954 for n > 10^4. "Late birds" (such that a(k) > a(n) for all k > n) are a(1) = 1, a(2) = 2, a(4) = 4, a(5) = 5, a(21) = 9, a(27) = 15, a(44) = 16, a(104) = 24, a(173) = 59, a(365) = 61, a(369) = 81, a(500) = 100, a(590) = 124, a(735) = 129, a(840) = 152, a(987) = 169, a(1564) = 196, a(1797) = 249, a(2415) = 305, a(3368) = 400, a(3545) = 425, a(4025) = 475, a(4466) = 520, a(5018) = 556, a(5477) = 565, a(6686) = 676, a(7239) = 771, a(8025) = 795, a(8182) = 904, a(9369) = 939, ... Values that occur not less often than any smaller one are: 1, 2, 4 (once), 5, 9, 15 (twice), 16, 48, 64, 86, 100 (three times), 144 (five times), 169 (seven times), ... Values that never occur are: 3, 6, 7, 8, 11, 13, 14, 18, 19, 20, 21, 22, 23, 25, 26, 29, 30, 32, 34, 35, 38, 39, 40, 43, 44, 45, 47, 51, 53, 54, 56, 58, 62, 67, 68, 69, 70, 71, 72, 74, 75, 77, 78, 80, 82, 83, 87, 89, 90, 91, 92, 94, 97, 98, 99, ... - M. F. Hasler, Nov 25 2016

Examples

			6^2/p(6) = 36/13 = 2+10/13; a(6) = 2+10 = 12.
		

Crossrefs

Programs

  • Magma
    [n^2-(NthPrime(n)-1)*Floor(n^2/NthPrime(n)): n in [1..70]]; // Vincenzo Librandi, Feb 18 2015
    
  • Mathematica
    Table[n^2 - (Prime[n] - 1) Floor[n^2 / Prime[n]], {n, 80}] (* Vincenzo Librandi, Feb 18 2015 *)
  • PARI
    a(n) = {my(sq = n^2); my(p = prime(n)); (sq % p) + sq\p;} \\ Michel Marcus, Feb 18 2015
    
  • PARI
    A075771(n)=[1,1]*divrem(n^2,prime(n)) \\ M. F. Hasler, Nov 25 2016

Formula

a(n) = ds_prime(n)(n^2), where ds_prime(n) = digital sum base the n-th prime.
a(n) = n^2 - (prime(n)-1)*floor(n^2/prime(n)). For example, a(2) = ds_prime(2)(2^2) = ds_3(4) = 1 + 1 = 2; a(6) = ds_prime(6)(6^2) = ds_13(36) = 2 + 10 = 12.