A075814 Palindromic odd numbers with exactly 3 prime factors (counted with multiplicity).
99, 171, 333, 343, 363, 555, 575, 595, 747, 777, 909, 969, 1001, 1221, 1331, 1551, 1771, 3333, 3553, 5335, 5555, 5665, 5885, 5995, 7337, 7557, 7667, 7777, 7887, 9339, 9559, 9669, 9779, 9889, 11211, 11511, 11711, 11811, 12121, 12221, 12621, 12921
Offset: 1
Examples
99=3^2*11, 171=3^2*19 and 333=3^2*37 are palindromic, odd and have exactly 3 prime factors.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A046316.
Programs
-
Maple
test := proc(n) local d; d := convert(n,base,10); return ListTools[Reverse](d)=d and numtheory[bigomega](n)=3; end; a := []; for n from 1 to 13000 by 2 do if test(n) then a := [op(a),n]; end; od; a;
-
Mathematica
Select[Range[1,13001,2],PalindromeQ[#]&&PrimeOmega[#]==3&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 05 2017 *)075814:"
Extensions
Edited by Dean Hickerson, Oct 21 2002