A075828 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(b(n)*x + a(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.
0, 1, 1, 10, 13, 138, 101, 1228, 1923, 8930, 7303, 115356, 97249, 1721846, 1484475, 388760, 681971, 14725926, 13093585, 308430212, 1386466053, 1685280806, 1529091919, 42052434936, 38450390845, 226713176794, 208661769963
Offset: 1
Keywords
Links
- Petros Hadjicostas, Proofs of various results about the sequence u(n), 2020.
Programs
-
PARI
u(n) = if(n<2, x, (n-1)^2/u(n-1)+1); a(n) = polcoeff(numerator(u(n)), 0 ,x)
Formula
Extensions
Name edited by Petros Hadjicostas, May 06 2020
Comments