cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075848 Numbers k such that 2*k^2 + 9 is a square.

Original entry on oeis.org

0, 6, 36, 210, 1224, 7134, 41580, 242346, 1412496, 8232630, 47983284, 279667074, 1630019160, 9500447886, 55372668156, 322735561050, 1881040698144, 10963508627814, 63900011068740, 372436557784626, 2170719335639016
Offset: 0

Views

Author

Gregory V. Richardson, Oct 15 2002

Keywords

Comments

Lim_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2).

References

  • A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Programs

  • Mathematica
    LinearRecurrence[{6,-1},{0,6},30] (* Harvey P. Dale, Nov 28 2012 *)

Formula

a(n) = ((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) * (3/(2*sqrt(2)));
a(n) = 6*a(n-1) - a(n-2).
a(n) = 6*A001109(n).
G.f.: 6x/(1-6x+x^2). - Philippe Deléham, Nov 17 2008