cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A374565 Expansion of g.f. A(x) satisfying A(x)^3 = A( x*A(x)^2/(1-x) ).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 24, 57, 141, 350, 881, 2267, 5920, 15601, 41497, 111399, 301293, 819843, 2243058, 6167211, 17029473, 47200752, 131270283, 366195789, 1024380648, 2872770381, 8074967031, 22745832254, 64196912681, 181516532273, 514107418321, 1458407886019, 4143318012685
Offset: 1

Views

Author

Paul D. Hanna, Jul 23 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 11*x^6 + 24*x^7 + 57*x^8 + 141*x^9 + 350*x^10 + 881*x^11 + 2267*x^12 + 5920*x^13 + 15601*x^14 + 41497*x^15 + ...
where A(x)^3 = A( x*A(x)^2/(1-x) )
and A(x) = x + x*(A(x) + A(x)^3 + A(x)^9 + A(x)^27 + ... A(x)^(3^n) + ...).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 33*x^7 + 84*x^8 + 208*x^9 + 522*x^10 + 1341*x^11 + 3479*x^12 + 9078*x^13 + 23907*x^14 + 63560*x^15 + ...
Let B(x) be the series reversion of A(x), B(A(x)) = x, then
B(x) = x - x^2 + x^3 - 2*x^4 + 3*x^5 - 4*x^6 + 6*x^7 - 9*x^8 + 13*x^9 - 20*x^10 + ... + (-1)^(n-1)*A078932(n-1)*x^n + ...
where x/B(x) = 1 + x + x^3 + x^9 + x^27 + x^81 + ... + x^(3^n) + ...
F(x) = A(x/(1+x)) = x + x^4 + 3*x^7 + 13*x^10 + 67*x^13 + 378*x^16 + 2253*x^19 + 13947*x^22 + 88803*x^25 + 577903*x^28 + 3826870*x^31 + 25703868*x^34 + ...
where F(x)^3 = F( x*F(x)^2/(1 - x*F(x)^2) )
and F(x) = x + x*(F(x)^3 + F(x)^9 + F(x)^27 + ... + F(x)^(3^n) + ...).
SPECIFIC VALUES.
A(t) = 2/3 at t = 0.3351780091733165997365854281871805851976265481916...
where 8/27 = A( (4/9)*t/(1-t) )
and t = (2/3)/(1 + Sum_{n>=0} (2/3)^(3^n)).
A(t) = 1/2 at t = 0.3073229277642929985518391822746766756418592443672...
where 1/8 = A( (1/4)*t/(1-t) )
and t = (1/2)/(1 + Sum_{n>=0} (1/2)^(3^n)).
A(1/3) = 0.640317989282342396539425948311398871030928082061168...
where A(1/3)^3 = A( A(1/3)^2/2 ).
A(1/4) = 0.347324237093006237340030053166266719890703533474663...
where A(1/4)^3 = A( A(1/4)^2/3 ).
A(1/5) = 0.254102848699628177600720471035831153854183353627930...
where A(1/5)^3 = A( A(1/5)^2/4 ).
A(1/10) = 0.111264157881789221767410282888976753122883279205707...
where A(1/10)^3 = A( A(1/10)^2/9 ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = serreverse(x/(1 + sum(n=0,ceil(log(n+1)/log(3)), x^(3^n)) + x^3*O(x^n)) )); polcoeff(A,n)}
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=[1], Ax);
    for(i=1, n, A=concat(A, 0); Ax=x*Ser(A);
    A[#A] = -polcoeff( Ax^3 - subst(Ax, x, Ax^2*x/(1-x) ), #A+2) ); A[n]}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = x + x*Sum_{n>=0} A(x)^(3^n).
(2) A(x) = Series_Reversion( x/(1 + Sum_{n>=0} x^(3^n)) ).
(3) A(x)^3 = A( x*A(x)^2/(1-x) ).
(4) A(x)^9 = A( x*A(x)^8/(1 - x - x*A(x)^2) ).
(5) A(x)^27 = A( x*A(x)^26/(1 - x - x*A(x)^2 - x*A(x)^8) ).
(6) A(x)^(3^n) = A( x*A(x)^(3^n-1) / (1 - x*Sum_{k=0..n-1} A(x)^(3^k-1)) ) for n >= 1.
The radius of convergence r and A(r) satisfy r = 1/(Sum_{n>=0} 3^n*A(r)^(3^n-1)) and A(r) = A( A(r)^2*r/(1-r) )^(1/3), where r = 0.3359879296886914478616860912190963818298151003686099... and A(r) = 0.6985186992950193189255500784091315877737446624401085...

A374570 Expansion of g.f. A(x) satisfying A(x)^2 = A( A(x)*C(x) ), where C(x) = x + C(x)^2 is the Catalan function (A000108).

Original entry on oeis.org

1, 1, 3, 8, 27, 90, 320, 1152, 4257, 15934, 60486, 231894, 897242, 3497638, 13725678, 54174286, 214923493, 856560918, 3427838222, 13768875142, 55494305328, 224359469870, 909656736876, 3697874061870, 15068978724200, 61545704828266, 251899370771284, 1033027441769384
Offset: 1

Views

Author

Paul D. Hanna, Jul 11 2024

Keywords

Comments

Conjecture: for n > 1, a(n) is odd iff n = 2^k + 1 for k >= 0.

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 8*x^4 + 27*x^5 + 90*x^6 + 320*x^7 + 1152*x^8 + 4257*x^9 + 15934*x^10 + 60486*x^11 + 231894*x^12 + ...
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 79*x^6 + 282*x^7 + 1046*x^8 + 3916*x^9 + 14907*x^10 + 57274*x^11 + 222194*x^12 + ...
where A(x)^2 = A( A(x)*C(x) ).
A(x)*C(x) = x^2 + 2*x^3 + 6*x^4 + 18*x^5 + 60*x^6 + 204*x^7 + 720*x^8 + 2586*x^9 + 9468*x^10 + 35124*x^11 + 131898*x^12 + ...
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + ... + A000108(n)*x^n + ,,,
where C(x) = (1 - sqrt(1 - 4*x))/2 is the Catalan function.
Let B(x) satisfy A(x*B(x)) = x, then
B(x) = 1 - x - x^2 + 2*x^3 - x^4 + x^5 + 2*x^6 - 6*x^7 - x^8 + 5*x^9 + x^10 + 2*x^12 - 8*x^13 - 6*x^14 + 22*x^15 - x^16 + ... + A374571(n)*x^n + ...
where C(x*B(x)) = x*B(x^2) and C(x) = x + C(x)^2.
Also notice that A(x-x^2) is the odd function starting as
A(x-x^2) = x + x^3 + 4*x^5 + 18*x^7 + 96*x^9 + 546*x^11 + 3274*x^13 + 20326*x^15 + 129622*x^17+ 843854*x^19 + ...
satisfying A(x-x^2)^2 = A( x*A(x-x^2) ).
SPECIFIC VALUES.
G.f. A(x) diverges at x = 1/4; what is the radius of convergence?
A(2/9) = 0.410501753930478190014767562028185186269192589705662553072...
where A(2/9)^2 = A( (1/3) * A(2/9) ).
A(1/5) = 0.307823207567908585715446000098072863270477544252476707540...
where A(1/5)^2 = A( A(1/5) * (1 - sqrt(1/5))/2 ).
A(1/6) = 0.222895676073964945442191376315546188067098171316653068516...
where A(1/6)^2 = A( A(1/6) * (1 - sqrt(1/3))/2 ).
A(1/8) = 0.149886223456626114071674919752683973970671151550604884301...
where A(1/8)^2 = A( A(1/8) * (1 - sqrt(1/2))/2 ).
A(1/10) = 0.11421035457722945538609562679806658343632346343476019471...
where A(1/10)^2 = A( A(1/10) * (1 - sqrt(3/5))/2 ).
A(1/12) = 0.09255115114959352826965125804331807348315032543228258146...
where A(1/12)^2 = A( A(1/12) * (1 - sqrt(2/3))/2 ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], Ax, C = serreverse(x-x^2 + x^2*O(x^n)));
    for(i=1, n, A=concat(A, 0); Ax=x*Ser(A);
    A[#A] = -polcoeff( Ax^2 - subst(Ax, x, Ax*C ), #A+1) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n, where B(x) = (1/x)*Series_Reversion(A(x)) is the g.f. of A374571 and C(x) = x + C(x)^2 is the g.f. of A000108, satisfies the following formulas.
(1) A(x)^2 = A( A(x)*C(x) ).
(2) x^2 = A( x*C(x*B(x)) ).
(3) A(x) = x / B(A(x)).
(4) A(x) = C(x) / B(A(x)^2).
(5) C(x*B(x)) = x*B(x^2).
(6) A(x-x^2)^2 = A( x*A(x-x^2) ).

A134527 G.f. A(x) satisfies: A(x) = Sum_{n>=0} [x*A(x)]^(2^n-1).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 24, 58, 149, 385, 1001, 2652, 7140, 19384, 52944, 145590, 402949, 1121117, 3133255, 8793372, 24774557, 70045871, 198672464, 565144064, 1611946284, 4609140916, 13209415116, 37937455636, 109171460104, 314736939884, 908930799572, 2629120466966
Offset: 0

Views

Author

Paul D. Hanna, Nov 19 2007

Keywords

Comments

Number of Dyck n-paths with all ascent lengths being 1 less than a power of 2. [David Scambler, May 07 2012]

Crossrefs

Cf. A075864.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x<0 or y>x, 0,
          `if`(x=0, 1, b(x-1, y+1, true)+`if`(t, add(
           b(x-2^j+1, y-2^j+1, false), j=1..ilog2(y+1)), 0)))
        end:
    a:= n-> b(2*n, 0, true):
    seq(a(n), n=0..32);  # Alois P. Heinz, Apr 01 2019
  • Mathematica
    f[x_, y_, d_] := f[x, y, d] = If[x < 0 || y < x, 0, If[x == 0 && y == 0, 1, f[x - 1, y, 0] + f[x, y - If[d == 0, 1, 2*d], If[d == 0, 1, 2*d]]]];Table[f[n, n, 0], {n, 0, 28}] (* David Scambler, May 07 2012 *)
  • PARI
    a(n)=polcoeff(serreverse(x/sum(j=0,#binary(n),x^(2^j-1)+ x*O(x^n))),n)

Formula

G.f.: A(x) = Series_Reversion{x/[Sum_{n>=0} x^(2^n-1)]}.

A374572 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*(1+x)*A(x) ).

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 27, 69, 183, 481, 1283, 3453, 9361, 25651, 70927, 197721, 555039, 1567345, 4449023, 12686465, 36323203, 104381397, 300958959, 870378337, 2524129349, 7338679127, 21386456807, 62459196233, 182776933033, 535861013939, 1573742036447, 4629306941913
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 5*x^5 + 11*x^6 + 27*x^7 + 69*x^8 + 183*x^9 + 481*x^10 + 1283*x^11 + 3453*x^12 + 9361*x^13 + 25651*x^14 + 70927*x^15 + ...
where A(x)^2 = A( x*(1+x)*A(x) ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 8*x^5 + 17*x^6 + 38*x^7 + 95*x^8 + 244*x^9 + 649*x^10 + 1738*x^11 + 4699*x^12 + ...
Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then
B(x) = x - x^2 + x^3 - 3*x^4 + 9*x^5 - 25*x^6 + 71*x^7 - 219*x^8 + 693*x^9 - 2197*x^10 + 7069*x^11 - 23135*x^12 + ...
where B(x^2) = x*B(x)*(1 + B(x)).
SPECIFIC VALUES.
A(t) = 1/2 at t = 0.301949314609828865985839329094529550482897401344979...
where 1/4 = A( t*(1 + t)/2 ).
A(3/10) = 0.492388112365452715229250795508017422919418907801551...
where A(3/10)^2 = A( (39/100)*A(3/10) ).
A(2/7) = 0.443877424659041232765055763766392304444609934055603...
where A(2/7)^2 = A( (18/49)*A(2/7) ).
A(1/4) = 0.352241294433584221893793757577235288109595399125986...
where A(1/4)^2 = A( (5/16)*A(1/4) ).
A(1/5) = 0.255826785620580342641277164817159026900345909888978...
where A(1/5)^2 = A( (6/25)*A(1/5) ).
		

Crossrefs

Cf. A075864.

Programs

  • PARI
    {a(n) = my(A=[0,1], Ax); for(i=1,n, A = concat(A,0); Ax = Ser(A);
    A[#A] = polcoeff( subst(Ax,x, x*(1+x)*Ax ) - Ax^2, #A) );A[n+1]}
    for(n=1,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*(1+x)*A(x) ).
(2) A(x)^4 = A( x*(1+x)*A(x)^3 + x^2*(1+x)^2*A(x)^4 ).
(3) A(x)^8 = A( x*(1+x)*A(x)^7 + x^2*(1+x)^2*A(x)^8 + x^2*(1+x)^2*A(x)^10 + 2*x^3*(1+x)^3*A(x)^11 + x^4*(1+x)^4*A(x)^12 ).
(4) x^2 = A( x*B(x)*(1 + B(x)) ) where A(B(x)) = x.
a(n) ~ c * d^n / n^(3/2), where d = 3.0870367560295429... and c = 0.17761867899908... - Vaclav Kotesovec, Jul 19 2024

A380554 G.f. A(x) satisfies A(x)^4 = A( A(x)^3 * x/(1-x) ).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 75, 163, 391, 991, 2498, 6150, 15016, 37116, 93482, 238154, 608074, 1551370, 3964200, 10176384, 26261500, 68034484, 176661828, 459534596, 1197777556, 3129475636, 8195867902, 21508247446, 56540427826, 148863643466, 392539322259, 1036662269875, 2741706892035
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2025

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 6*x^6 + 16*x^7 + 36*x^8 + 75*x^9 + 163*x^10 + 391*x^11 + 991*x^12 + 2498*x^13 + 6150*x^14 + 15016*x^15 + ...
where A(x)^4 = A( A(x)^3 * x/(1-x) );
also, A(x) = x*(1 + A(x) + A(x)^4 + A(x)^16 + A(x)^64 + ...).
RELATED SERIES.
x/(1 + x + x^4 + x^16 + x^64 + ...) = x - x^2 + x^3 - x^4 + x^6 - 2*x^7 + 3*x^8 - 3*x^9 + 2*x^10 - 3*x^12 + 6*x^13 - 8*x^14 + 8*x^15 - 5*x^16 + ...
where x = A( x/(1 + x + x^4 + x^16 + x^64 + ...) ).
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 18*x^7 + 42*x^8 + 112*x^9 + 288*x^10 + ...
A(x)^4 = x^4 + 4*x^5 + 10*x^6 + 20*x^7 + 39*x^8 + 88*x^9 + 228*x^10 + 600*x^11 + ...
SPECIFIC VALUES.
A(t) = 7/10 at t = 0.36018915820185609929548309671397017657231396...
  where (7/10)^4 = A( (7/10)^3*t/(1-t) )
  and t = (7/10)/(1 + Sum_{n>=0} (7/10)^(4^n)).
A(t) = 2/3 at t = 0.357324077294579321123715825007257976292387856...
  where 16/81 = A( (8/27)*t/(1-t) )
  and t = (2/3)/(1 + Sum_{n>=0} (2/3)^(4^n)).
A(t) = 1/2 at t = 0.319996875030517280093584464262123092506355813...
  where 1/16 = A( (1/8)*t/(1-t) )
  and t = (1/2)/(1 + Sum_{n>=0} (1/2)^(4^n)).
A(t) = 1/3 at t = 0.247706417742171319902767393551872977585317906...
  where 1/81 = A( (1/27)*t/(1-t) )
  and t = (1/3)/(1 + Sum_{n>=0} (1/3)^(4^n)).
A(1/3) = 0.54373202136840396341881074287828877295481851718413...
  where A(1/3)^4 = A( A(1/3)^3*(1/2) ).
A(1/4) = 0.33766677567921691723942758840979376280294197783058...
  where A(1/4)^4 = A( A(1/4)^3*(1/3) ).
A(1/5) = 0.25099215755350299738032710744403195608988446686839...
A(1/6) = 0.20032206620931060989695576481191496886558371212657...
		

Crossrefs

Programs

  • PARI
    /* A(x) = Series_Reversion( x/(1 + Sum_{n>=0} x^(4^n)) ) */
    {a(n) = my(A = serreverse( x/(1 + sum(m=0,ceil(log(n+1)/log(4)), x^(4^m) +x*O(x^n))) )); polcoef(A,n)}
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    /* A(x)^4 = A( A(x)^3 * x/(1-x) ) */
    {a(n) = my(A=[1], Ax);
    for(i=1, n, A=concat(A, 0); Ax=x*Ser(A);
    A[#A] = -polcoeff( Ax^4 - subst(Ax, x, Ax^3*x/(1-x) ), #A+3) ); A[n]}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = Series_Reversion( x/(1 + Sum_{n>=0} x^(4^n)) ).
(2) A(x) = x * (1 + Sum_{n>=0} A(x)^(4^n)).
(3) A(x) = x/(1-x) * (1 + Sum_{n>=1} A(x)^(4^n)).
(4) A(x)^4 = A( A(x)^3 * x/(1-x) ).
(5) A(x)^16 = A( A(x)^15 * x/(1 - x - x*A(x)^3) ).
(6) A(x)^64 = A( A(x)^63 * x/(1 - x - x*A(x)^3 - x*A(x)^15) ).
(7) A(x)^(4^n) = A( A(x)^(4^n-1) * x/(1 - x*Sum_{k=0..n-1} A(x)^(4^k-1)) ) for n >= 1.
The radius of convergence r and A(r) satisfy r = 1/(Sum_{n>=0} 4^n*A(r)^(4^n-1)) and A(r) = A( A(r)^3*r/(1-r) )^(1/4), where r = 0.3613437470225014946622689597447779556234350427479140... and A(r) = 0.7371720020640001613320630406857895231048184830453856...

A088704 a(n) equals the coefficient of x^n in f(x)^n where f(x)=1+sum(n>=0,x^(2^n)).

Original entry on oeis.org

1, 1, 3, 7, 23, 71, 231, 743, 2431, 7999, 26563, 88683, 297551, 1002015, 3385175, 11466887, 38933183, 132454719, 451423203, 1540920939, 5267257103, 18027478847, 61770328227, 211872505243, 727411948351, 2499560376671
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2003

Keywords

Crossrefs

Cf. A075864.

Formula

G.f.: A(x) = 1 + x*d/dx[log(g(x))], where g(x)=sum(n>=0, A075864(n)*x^n) and g(x)=f(x*g(x)), given f(x)=1+sum(n>=0, x^(2^n)).
Showing 1-6 of 6 results.