cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075874 Pi = Sum_{n >= 1} a(n)/n!, with largest possible a(n).

Original entry on oeis.org

3, 0, 0, 3, 1, 5, 6, 5, 0, 1, 4, 7, 8, 0, 6, 7, 10, 7, 10, 4, 10, 6, 16, 1, 11, 20, 3, 18, 12, 9, 13, 18, 21, 14, 34, 27, 11, 27, 33, 36, 18, 5, 18, 5, 23, 39, 1, 10, 42, 28, 17, 20, 51, 8, 42, 47, 0, 27, 23, 16, 52, 32, 52, 53, 24, 43, 61, 64, 18, 17, 11, 0, 53, 14, 62
Offset: 1

Views

Author

N. J. A. Sloane, Robert G. Wilson v, Nov 02 2001 and Oct 20 2002

Keywords

Comments

What is meant is the expansion in the factorial number system, cf. links. The formula itself is not sufficient to define the terms uniquely: a(n) can be decreased by any amount x if x*(n+1) is added to a(n+1). - M. F. Hasler, Nov 26 2018

Examples

			Pi = 3/1! + 0/2! + 0/3! + 3/4! + 1/5! + ...
		

Crossrefs

Essentially same as A007514.
Pi in base n: A004601 to A004608, A000796, A068436 to A068440, A062964.

Programs

  • Magma
    SetDefaultRealField(RealField(250)); R:=RealField(); [Floor(Pi(R))] cat [Floor(Factorial(n)*Pi(R)) - n*Floor(Factorial((n-1))*Pi(R)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
    
  • Maple
    Digits := 120; M := proc(a,n) local i,b,c; b := a; c := [ floor(b) ]; for i from 1 to n-1 do b := b-c[ i ]/i!; c := [ op(c), floor(b*(i+1)!) ]; od; c; end: t1 := M(Pi,100); A075874 := n->t1[n+1];
  • Mathematica
    p = N[Pi, 1000]; Do[k = Floor[p*n! ]; p = p - k/n!; Print[k], {n, 1, 75}]
    With[{b = Pi}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
  • PARI
    x=Pi;vector(floor((y->y/log(y))(default(realprecision))),n,t=n!;k=floor(x*t);x-=k/t;k) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    vector(30,n,if(n>1,t=t%1*n,t=Pi)\1) \\ Increase realprecision (e.g., \p500) to compute more terms. - M. F. Hasler, Nov 25 2018
    
  • PARI
    default(realprecision, 250); b = Pi; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
    
  • Sage
    def A075874(n):
        if (n==1): return floor(pi)
        else: return expand(floor(factorial(n)*pi) - n*floor(factorial(n-1)*pi))
    [A075874(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018

Formula

a(1)=3; for n >= 2, a(n) = floor(n!*Pi) - n*floor((n-1)!*Pi). - Benoit Cloitre, Mar 10 2002