A075874 Pi = Sum_{n >= 1} a(n)/n!, with largest possible a(n).
3, 0, 0, 3, 1, 5, 6, 5, 0, 1, 4, 7, 8, 0, 6, 7, 10, 7, 10, 4, 10, 6, 16, 1, 11, 20, 3, 18, 12, 9, 13, 18, 21, 14, 34, 27, 11, 27, 33, 36, 18, 5, 18, 5, 23, 39, 1, 10, 42, 28, 17, 20, 51, 8, 42, 47, 0, 27, 23, 16, 52, 32, 52, 53, 24, 43, 61, 64, 18, 17, 11, 0, 53, 14, 62
Offset: 1
Keywords
Examples
Pi = 3/1! + 0/2! + 0/3! + 3/4! + 1/5! + ...
Links
- Hans Havermann, Table of n, a(n) for n = 1..10000
- D. E. Knuth, The Art of Computer Programming, Vol.2, 3rd ed., Addison-Wesley, 2014, ISBN 978-0321635761, p.209.
- Eric Weisstein's World of Mathematics, Harmonic Expansion
- Wikipedia, Factorial number system
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(250)); R:=RealField(); [Floor(Pi(R))] cat [Floor(Factorial(n)*Pi(R)) - n*Floor(Factorial((n-1))*Pi(R)) : n in [2..80]]; // G. C. Greubel, Nov 26 2018
-
Maple
Digits := 120; M := proc(a,n) local i,b,c; b := a; c := [ floor(b) ]; for i from 1 to n-1 do b := b-c[ i ]/i!; c := [ op(c), floor(b*(i+1)!) ]; od; c; end: t1 := M(Pi,100); A075874 := n->t1[n+1];
-
Mathematica
p = N[Pi, 1000]; Do[k = Floor[p*n! ]; p = p - k/n!; Print[k], {n, 1, 75}] With[{b = Pi}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Nov 26 2018 *)
-
PARI
x=Pi;vector(floor((y->y/log(y))(default(realprecision))),n,t=n!;k=floor(x*t);x-=k/t;k) \\ Charles R Greathouse IV, Jul 15 2011
-
PARI
vector(30,n,if(n>1,t=t%1*n,t=Pi)\1) \\ Increase realprecision (e.g., \p500) to compute more terms. - M. F. Hasler, Nov 25 2018
-
PARI
default(realprecision, 250); b = Pi; for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Nov 26 2018
-
Sage
def A075874(n): if (n==1): return floor(pi) else: return expand(floor(factorial(n)*pi) - n*floor(factorial(n-1)*pi)) [A075874(n) for n in (1..80)] # G. C. Greubel, Nov 26 2018
Formula
a(1)=3; for n >= 2, a(n) = floor(n!*Pi) - n*floor((n-1)!*Pi). - Benoit Cloitre, Mar 10 2002
Comments