cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075875 Triangular numbers that are 3-almost primes.

Original entry on oeis.org

28, 45, 66, 78, 105, 153, 171, 190, 231, 325, 406, 435, 465, 561, 595, 741, 861, 903, 946, 1378, 1653, 2211, 2278, 2485, 3081, 3655, 3741, 4371, 4465, 4753, 5151, 5253, 5995, 6441, 7021, 7381, 7503, 8515, 8911, 9453, 9591, 10011, 10153, 10585, 11026
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 19 2002

Keywords

Examples

			a(1)=28, 28 is a triangular number and 28 = 2*2*7, i.e., is a product of 3 prime factors so is 3-almost prime.
		

Crossrefs

Cf. A000217, A014612, A068443, A128896 (subsequence).

Programs

  • Mathematica
    Select[Accumulate[Range[200]],PrimeOmega[#]==3&] (* Harvey P. Dale, Jul 24 2012 *)
  • PARI
    issemi(n)=bigomega(n)==2
    ok(m,n)=if(isprime(m), issemi(n), isprime(n) && issemi(m))
    list(lim)=my(v=List()); lim\=1; for(n=7,(sqrt(8*lim+1)-1)\2, if(if(n%2, ok(n,(n+1)/2), ok(n/2,n+1)), listput(v, n*(n+1)/2))); Vec(v) \\ Charles R Greathouse IV, Jun 12 2017

Formula

q:= n-> is(numtheory[bigomega](n)=3):
select(q, [i*(i+1)/2$i=0..200])[]; # Alois P. Heinz, Mar 27 2024