cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075887 a(n) = 1 + n + n[n/2] + n[n/2][n/3] +... + n[n/2][n/3]...[n/n], where [x]=ceiling(x).

Original entry on oeis.org

1, 2, 5, 16, 45, 171, 421, 1968, 4553, 19225, 57261, 226854, 496309, 3136420, 6764563, 24850336, 84877201, 380461599, 805949533, 4411165990, 9288196621, 48275465722, 154143694937, 527401107276, 1100708161081, 8151403215501
Offset: 0

Views

Author

Paul D. Hanna, Oct 17 2002

Keywords

Comments

a(n) ~ L^n where L = 3.517487255902369649399793699323864170685620..., with log(L) = Sum_{k=1..inf} log(k+1)/(k*(k+1)) = 1.2577468869443696300... (cf. A131688).

Examples

			a(5) = 171 = 1 +5[5/2] +5[5/2][5/3] +5[5/2][5/3][5/4] +5[5/2][5/3][5/4][5/5] = 1 + 5 + 5*3 + 5*3*2 + 5*3*2*2 + 5*3*2*2*1, here [x]=ceiling(x).
		

Crossrefs

Programs

  • Magma
    [1] cat [1 + (&+[(&*[Ceiling(n/k): k in [1..j]]): j in [1..n]]): n in [1..50]]; // G. C. Greubel, Oct 11 2018
  • Mathematica
    Table[1 +Sum[Product[Ceiling[n/k], {k,1,j}], {j,1,n}], {n,0,50}] (* G. C. Greubel, Oct 11 2018 *)
  • PARI
    {a(n) = 1 + sum(m=1,n,prod(k=1,m,ceil(n/k)))}
    for(n=0,40,print1(a(n),", "))
    

Formula

a(n) = 1 + Sum_{m=1..n} Product_{k=1..m} ceiling(n/k) for n>0 and a(0)=1.