A075887 a(n) = 1 + n + n[n/2] + n[n/2][n/3] +... + n[n/2][n/3]...[n/n], where [x]=ceiling(x).
1, 2, 5, 16, 45, 171, 421, 1968, 4553, 19225, 57261, 226854, 496309, 3136420, 6764563, 24850336, 84877201, 380461599, 805949533, 4411165990, 9288196621, 48275465722, 154143694937, 527401107276, 1100708161081, 8151403215501
Offset: 0
Examples
a(5) = 171 = 1 +5[5/2] +5[5/2][5/3] +5[5/2][5/3][5/4] +5[5/2][5/3][5/4][5/5] = 1 + 5 + 5*3 + 5*3*2 + 5*3*2*2 + 5*3*2*2*1, here [x]=ceiling(x).
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[1] cat [1 + (&+[(&*[Ceiling(n/k): k in [1..j]]): j in [1..n]]): n in [1..50]]; // G. C. Greubel, Oct 11 2018
-
Mathematica
Table[1 +Sum[Product[Ceiling[n/k], {k,1,j}], {j,1,n}], {n,0,50}] (* G. C. Greubel, Oct 11 2018 *)
-
PARI
{a(n) = 1 + sum(m=1,n,prod(k=1,m,ceil(n/k)))} for(n=0,40,print1(a(n),", "))
Formula
a(n) = 1 + Sum_{m=1..n} Product_{k=1..m} ceiling(n/k) for n>0 and a(0)=1.
Comments