A075993 Triangle read by rows: T(n,m) is the number of integers k such that floor(n/k) = m, n >= 1, k = 1..n.
1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 3, 1, 0, 0, 1, 3, 1, 1, 0, 0, 1, 4, 1, 1, 0, 0, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 5, 1, 1, 1, 0, 0, 0, 0, 1, 5, 2, 1, 0, 1, 0, 0, 0, 0, 1, 6, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 6, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 7, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 7, 3, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
T(5, 1) = 3 counts k such that floor(5/k) = 1, namely k = 5, 4, 3. First 10 rows: 1 1 1 2 0 1 2 1 0 1 3 1 0 0 1 3 1 1 0 0 1 4 1 1 0 0 0 1 4 2 0 1 0 0 0 1 5 1 1 1 0 0 0 0 1 5 2 1 0 1 0 0 0 0 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
Programs
-
Mathematica
Table[Floor[n/m] - Floor[n/(m + 1)], {n, 14}, {m, n}] // Flatten (* Michael De Vlieger, Jan 14 2022 *)
Formula
T(n, m) = floor(n/m) - floor(n/(m+1)).
Comments