cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A010766 Triangle read by rows: row n gives the numbers floor(n/k), k = 1..n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 1, 1, 5, 2, 1, 1, 1, 6, 3, 2, 1, 1, 1, 7, 3, 2, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 13, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Number of times k occurs as divisor of numbers not greater than n. - Reinhard Zumkeller, Mar 19 2004
Viewed as a partition, row n is the smallest partition that contains every partition of n in the usual ordering. - Franklin T. Adams-Watters, Mar 11 2006
Row sums = A006218. - Gary W. Adamson, Oct 30 2007
A014668 = eigensequence of the triangle. A163313 = A010766 * A014668 (diagonalized) as an infinite lower triangular matrix. - Gary W. Adamson, Jul 30 2009
A018805(T(n,k)) = A242114(n,k). - Reinhard Zumkeller, May 04 2014
Viewed as partitions, all rows are self-conjugate. - Matthew Vandermast, Sep 10 2014
Row n is the partition whose Young diagram is the union of Young diagrams of all partitions of n (rewording of Franklin T. Adams-Watters's comment). - Harry Richman, Jan 13 2022

Examples

			Triangle starts:
   1:  1;
   2:  2,  1;
   3:  3,  1, 1;
   4:  4,  2, 1, 1;
   5:  5,  2, 1, 1, 1;
   6:  6,  3, 2, 1, 1, 1;
   7:  7,  3, 2, 1, 1, 1, 1;
   8:  8,  4, 2, 2, 1, 1, 1, 1;
   9:  9,  4, 3, 2, 1, 1, 1, 1, 1;
  10: 10,  5, 3, 2, 2, 1, 1, 1, 1, 1;
  11: 11,  5, 3, 2, 2, 1, 1, 1, 1, 1, 1;
  12: 12,  6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1;
  13: 13,  6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  14: 14,  7, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  15: 15,  7, 5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
  16: 16,  8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
  17: 17,  8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  18: 18,  9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  19: 19,  9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  20: 20, 10, 6, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
  ...
		

References

  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.

Crossrefs

Another version of A003988.
Finite differences of rows: A075993.
Cf. related triangles: A002260, A013942, A051731, A163313, A277646, A277647.
Cf. related sequences: A006218, A014668, A115725.
Columns of this triangle:
T(n,1) = n,
T(n,2) = A008619(n-2) for n>1,
T(n,3) = A008620(n-3) for n>2,
T(n,4) = A008621(n-4) for n>3,
T(n,5) = A002266(n) for n>4,
T(n,n) = A000012(n) = 1.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033322(k),
T(3,k) = A278105(k),
T(4,k) = A033324(k),
T(5,k) = A033325(k),
T(6,k) = A033326(k),
T(7,k) = A033327(k),
T(8,k) = A033328(k),
T(9,k) = A033329(k),
T(10,k) = A033330(k),
...
T(99,k) = A033419(k),
T(100,k) = A033420(k),
T(1000,k) = A033421(k),
T(10^4,k) = A033422(k),
T(10^5,k) = A033427(k),
T(10^6,k) = A033426(k),
T(10^7,k) = A033425(k),
T(10^8,k) = A033424(k),
T(10^9,k) = A033423(k).

Programs

  • Haskell
    a010766 = div
    a010766_row n = a010766_tabl !! (n-1)
    a010766_tabl = zipWith (map . div) [1..] a002260_tabl
    -- Reinhard Zumkeller, Apr 29 2015, Aug 13 2013, Apr 13 2012
    
  • Maple
    seq(seq(floor(n/k),k=1..n),n=1..20); # Robert Israel, Sep 01 2014
  • Mathematica
    Flatten[Table[Floor[n/k],{n,20},{k,n}]] (* Harvey P. Dale, Nov 03 2012 *)
  • PARI
    a(n)=t=floor((-1+sqrt(1+8*(n-1)))/2);(t+1)\(n-t*(t+1)/2) \\ Edward Jiang, Sep 10 2014
    
  • PARI
    T(n, k) = sum(i=1, n, (i % k) == 0); \\ Michel Marcus, Apr 08 2017

Formula

G.f.: 1/(1-x)*Sum_{k>=1} x^k/(1-y*x^k). - Vladeta Jovovic, Feb 05 2004
Triangle A010766 = A000012 * A051731 as infinite lower triangular matrices. - Gary W. Adamson, Oct 30 2007
Equals A000012 * A051731 as infinite lower triangular matrices. - Gary W. Adamson, Nov 14 2007
Let T(n,0) = n+1, then T(n,k) = (sum of the k preceding elements in the previous column) minus (sum of the k preceding elements in same column). - Mats Granvik, Gary W. Adamson, Feb 20 2010
T(n,k) = (n - A048158(n,k)) / k. - Reinhard Zumkeller, Aug 13 2013
T(n,k) = 1 + T(n-k,k) (where T(n-k,k) = 0 if n < 2*k). - Robert Israel, Sep 01 2014
T(n,k) = T(floor(n/k),1) if k>1; T(n,1) = 1 - Sum_{i=2..n} A008683(i)*T(n,i). If we modify the formula to T(n,1) = 1 - Sum_{i=2..n} A008683(i)*T(n,i)/i^s, where s is a complex variable, then the first column becomes the partial sums of the Riemann zeta function. - Mats Granvik, Apr 27 2016

Extensions

Cross references edited by Jason Kimberley, Nov 23 2016

A010786 Floor-factorial numbers: a(n) = Product_{k=1..n} floor(n/k).

Original entry on oeis.org

1, 1, 2, 3, 8, 10, 36, 42, 128, 216, 600, 660, 3456, 3744, 9408, 18900, 61440, 65280, 279936, 295488, 1152000, 2116800, 4878720, 5100480, 31850496, 41472000, 93450240, 163762560, 568995840, 589317120, 3265920000, 3374784000, 11324620800, 19269550080, 42188636160
Offset: 0

Views

Author

Keywords

Comments

Product floor(n/1)*floor(n/2)*floor(n/3)*...*floor(n/n).
a(n) is the number of functions f:[n]->[n] where f(x) is a multiple of x for all x in [n]. We note that there are floor[n/x] possible choices for each image of x under f. [Dennis P. Walsh, Nov 06 2014]

Examples

			For n=4 the a(4)=8 functions are given by the image sequences <1,2,3,4>, <1,4,3,4>, <2,2,3,4>, <2,4,3,4>, <3,2,3,4>, <3,4,3,4>, <4,2,3,4>, and <4,4,3,4>. [_Dennis P. Walsh_, Nov 06 2014]
		

Crossrefs

Programs

  • Haskell
    a010786 n = product $ map (div n) [1..n]
    -- Reinhard Zumkeller, Feb 26 2012
    
  • Magma
    [&*[n div i: i in [1..n]]: n in [1..35]]; // Vincenzo Librandi, Oct 03 2018
  • Maple
    a := n -> mul( floor(n/k), k=1..n);
  • Mathematica
    Table[Product[Floor[n/k],{k,n}],{n,40}] (* Harvey P. Dale, May 09 2017 *)
  • PARI
    vector(50, n, prod(k=1, n, n\k)) \\ Michel Marcus, Nov 10 2014
    

Formula

a(n+1) = a(n)*A208449(n)/A208450(n). - Reinhard Zumkeller, Feb 26 2012
GCD(a(n), a(n+1)) = A208448(n). - Reinhard Zumkeller, Feb 26 2012
From Vaclav Kotesovec, Oct 03 2018: (Start)
log(a(n)) ~ c * (n - log(2*Pi*n)/2), where c = 0.7885...
Conjecture: c = A085361. (End)
From Ridouane Oudra, Jan 18 2025: (Start)
a(n) = Product_{k=1..n} ((k+1)/k)^floor(n/(k+1)).
a(n) = Product_{k=1..n} k^A075993(n, k).
a(n) = A092143(n)/f(n), where f(n) = Product_{k=1..n} ((floor(n/k)-1)!).
a(n) = A092143(n)/g(n), where g(n) = Product_{k=1..n} A377484(k).
a(n)/a(n-1) = A007955(n)/A377484(n). (End)

Extensions

More terms from Hieronymus Fischer, Jul 08 2007
Edited by N. J. A. Sloane, Jul 05 2008 at the suggestion of Rick L. Shepherd
a(0)=1 prepended by Alois P. Heinz, Oct 30 2023

A055086 n appears 1+[n/2] times.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16
Offset: 0

Views

Author

Michael Somos, Jun 13 2000

Keywords

Comments

The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 0, 0 <= k <= floor(n/2)) by rows from left to right: n -> T(t1(n), t2(n)).
a(n) gives the number of distinct positive values taken by [n/k]. E.g., a(5)=3: [5/{1,2,3,4,5}]={5,2,1,1,1}. - Marc LeBrun, May 17 2001
This sequence gives the elements in increasing order of the set {i+2j} where i>=0, j>=0. - Benoit Cloitre, Sep 22 2012

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Table[n,{Floor[n/2]+1}],{n,0,20}]] (* Harvey P. Dale, Mar 07 2014 *)
  • PARI
    {a(n) = floor(sqrt(4*n + 1)) - 1}
    
  • PARI
    t1(n)=floor(sqrt(1+4*n)-1) /* A055086 */
    
  • PARI
    t2(n)=(1+4*n-sqr(floor(sqrt(1+4*n))))\4 /* A055087 */
    
  • PARI
    a(n)=if(n<1,0,a(n-1-a(n-1)\2)+1) \\ Benoit Cloitre, May 09 2017
    
  • Python
    from math import isqrt
    def A055086(n): return isqrt((n<<2)|1)-1 # Chai Wah Wu, Nov 23 2024

Formula

a(n) = [sqrt(4*n + 1)] - 1 = A000267(n) - 1.
a(n) = Sum_{k=1..n} A063524(A075993(n, k)), for n>0. - Reinhard Zumkeller, Apr 06 2006
a(n) = ceiling(2*sqrt(n+1)) - 2. - Mircea Merca, Feb 05 2012
a(0) = 0, then for n>=1 a(n) = 1 + a(n-1-floor(a(n-1)/2)). - Benoit Cloitre, May 08 2017
a(n) = floor(b) + floor(n/(floor(b)+1)) where b = (sqrt(4*n+1)-1)/2. - Randell G Heyman, May 08 2019
Sum_{k>=1} (-1)^(k+1)/a(k) = Pi/8 + 3*log(2)/4. - Amiram Eldar, Jan 26 2024
Showing 1-3 of 3 results.