cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076036 G.f.: 1/(1 - 5*x*C(x)), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) = g.f. for the Catalan numbers A000108.

Original entry on oeis.org

1, 5, 30, 185, 1150, 7170, 44760, 279585, 1746870, 10916150, 68219860, 426353130, 2664633580, 16653699860, 104084695500, 650526003825, 4065775405350, 25411052086350, 158818913483700, 992617612224750, 6203857867325700, 38774103465635100, 242338116077385600
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

Numbers have the same parity as the Catalan numbers, that is, a(n) is even except for n of the form 2^m - 1. Follows from C(x) = 1/(1 - x*C(x)) = 1/(1 - 5*x*C(x)) (mod 2). - Peter Bala, Jul 24 2016

Crossrefs

Programs

  • PARI
    C(x) = (1 - sqrt(1 - 4*x))/(2*x);
    my(x = 'x + O('x^25)); Vec(1/(1 - 5*x*C(x))) \\ Michel Marcus, Jan 21 2020

Formula

a(n) = Sum_{k = 0..n} A106566(n, k)*5^k. - Philippe Deléham, Sep 01 2005
a(n) = Sum{k = 0..n} A039599(n,k)*4^k. - Philippe Deléham, Sep 08 2007
a(0) = 1, a(n) = (25*a(n-1) - 5*A000108(n-1))/4 for n >= 1. - Philippe Deléham, Nov 27 2007
a(n) = Sum_{k = 0..n} A116395(n,k)*3^k. - Philippe Deléham, Sep 27 2009
D-finite with recurrence: +4*n*a(n) +(-41*n+24)*a(n-1) +50*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 20 2020
a(n) = 5*A076025(n), n>0. - R. J. Mathar, Jan 20 2020