A076136 Numbers n such that Omega(n) = Omega(n-1) + Omega(n-2), where Omega(n) (A001222) denotes the number of prime factors of n, counting multiplicity.
3, 4, 8, 12, 16, 36, 40, 54, 63, 75, 88, 104, 112, 132, 135, 140, 150, 195, 200, 204, 208, 220, 252, 279, 280, 294, 328, 375, 390, 399, 405, 408, 416, 423, 444, 456, 464, 486, 510, 516, 520, 525, 558, 560, 592, 612, 615, 616, 620, 630, 636, 644, 656, 663, 680
Offset: 1
Keywords
Examples
E.g. Omega(3) = 1 + 0 = Omega(2) + Omega(1). Omega(4) = 1 + 1 = Omega(3) + Omega(2). 8 is a term because Omega(8)=3=Omega(7)+Omega(6)=1+2=3
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Omega[n_] := Apply[Plus, Transpose[FactorInteger[n]][[2]]]; l = {3}; Do[If[Omega[n] == Omega[n - 1] + Omega[n - 2], l = Append[l, n]], {n, 4, 1000}]; l Flatten[Position[Partition[PrimeOmega[Range[700]],3,1],?(#[[1]]+#[[2]]==#[[3]]&),1,Heads->False]]+2 (* _Harvey P. Dale, Aug 24 2019 *)
-
PARI
j=[]; for(n=1,1000,if(bigomega(n)==bigomega(n-1)+bigomega(n-2),j=concat(j,n))); j