A077434 Duplicate of A076136.
3, 4, 8, 12, 16, 36, 40, 54, 63, 75, 88, 104, 112, 132, 135, 140, 150, 195, 200, 204, 208
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
psi(210) = 576 = 240 + 336 = psi(209) + psi(208), therefore 210 is in the sequence.
psi[n_]:=If[n < 1, 0, n Sum[ MoebiusMu[ d]^2 / d, {d, Divisors @ n}]]; Select[Range[10^6], psi[#]==psi[#-1]+psi[#-2] &]
s(146139) = 76581 = 75802 + 779 = s(146138) + s(146137), therefore 146139 is in the sequence.
s[n_]:=DivisorSigma[1,n]-n; Select[Range[10^6], s[#]==s[#-1]+s[#-2] &]
a(3) = 64 is a term because Omega(64) = 6 = Omega(63)+Omega(62)+Omega(61) = 3+2+1 = 6.
l = {4}; Do[If[Omega[n] == Omega[n - 1] + Omega[n - 2] + Omega[n - 3], l = Append[l, n]], {n, 5, 5000}]; l Transpose[Select[Partition[Range[2100],4,1],PrimeOmega[Last[#]] == Total[ PrimeOmega[Take[#,3]]]&]][[4]] (* Harvey P. Dale, Nov 29 2011 *)
42 is a term since s(42) = 96 and s(40) + s(41) = 54 + 42 = 96.
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[3, 10^8], usigma[#] == usigma[# - 1] + usigma[# - 2] &]
usigma(k) = sumdivmult(k, d, if(gcd(d, k/d)==1, d)); \\ A034448 isok(k) = usigma(k) == usigma(k-1) + usigma(k-2); \\ Jinyuan Wang, Mar 08 2020
24 is a term since isigma(24) = 60 and isigma(22) + isigma(23) = 36 + 24 = 60.
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[3, 10^5], isigma[#] == isigma[# - 1] + isigma[# - 2] &]
a(2) = 16 is a term because Omega(16) = 4 = Omega(17) + Omega(18) = 1 + 3 = 4.
f:=func; [k:k in [2..650]| f(k) eq f(k+1)+ f(k+2)]; // Marius A. Burtea, Feb 19 2020
Select[Range[1, 1000], PrimeOmega[#] == PrimeOmega[# + 1] + PrimeOmega[# + 2] &] (* Vaclav Kotesovec, Feb 13 2019 *) Position[Partition[PrimeOmega[Range[700]],3,1],?(#[[1]]==#[[2]]+#[[3]] &),1,Heads->False]//Flatten (* _Harvey P. Dale, Aug 18 2019 *)
j=[]; for(n=1,1000,if(bigomega(n)==bigomega(n+1)+bigomega(n+2),j=concat(j,n))); j
lambda(717) = 238 = 178 + 60 = lambda(716) + lambda(715), therefore 717 is in the sequence.
Select[Range[10^6], CarmichaelLambda[#]==CarmichaelLambda[#-1]+CarmichaelLambda[#-2]&] Flatten[Position[Partition[CarmichaelLambda[Range[45*10^5]],3,1],?(#[[1]]+#[[2]] == #[[3]]&),1,Heads->False]]+2 (* _Harvey P. Dale, Sep 02 2024 *)
from sympy import reduced_totient A291175_list, a, b, c, n = [], 1, 1, 2, 3 while n < 10**6: if c == a + b: A291175_list.append(n) print(len(A291175_list),n) n += 1 a, b, c = b, c, reduced_totient(n) # Chai Wah Wu, Aug 31 2017
7 is a term since iphi(7) = 6 and iphi(5) + iphi(6) = 4 + 2 = 6.
f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], 1])); iphi[1] = 1; iphi[n_] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) - 1); Select[Range[3, 10^5], iphi[#] == iphi[# - 1] + iphi[# - 2] &]
3 is a term since cototient(3) = 1 and cototient(1) + cototient(2) = 0 + 1 = 1. 105 is a term since cototient(105) = 57 and cototient(103) + cototient(104) = 1 + 56 = 57.
cotot[n_] := n - EulerPhi[n]; Select[Range[3, 10^6], cotot[#] == cotot[# - 1] + cotot[# - 2] &]
Comments