A076137 Numbers k such that Omega(k) = Omega(k-1) + Omega(k-2) + Omega(k-3), where Omega(n) denotes the number of prime factors of n, with multiplicity.
4, 32, 64, 96, 144, 180, 216, 224, 240, 360, 400, 432, 576, 600, 648, 672, 800, 972, 1008, 1040, 1088, 1104, 1188, 1232, 1260, 1344, 1400, 1404, 1408, 1456, 1500, 1584, 1620, 1624, 1680, 1700, 1764, 1800, 1840, 1880, 1904, 1920, 1980, 2000, 2040, 2064
Offset: 1
Keywords
Examples
a(3) = 64 is a term because Omega(64) = 6 = Omega(63)+Omega(62)+Omega(61) = 3+2+1 = 6.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
l = {4}; Do[If[Omega[n] == Omega[n - 1] + Omega[n - 2] + Omega[n - 3], l = Append[l, n]], {n, 5, 5000}]; l Transpose[Select[Partition[Range[2100],4,1],PrimeOmega[Last[#]] == Total[ PrimeOmega[Take[#,3]]]&]][[4]] (* Harvey P. Dale, Nov 29 2011 *)