A076201 a(n), for n > 1, equals the least prime p such that p - a(n-1) is a cube, a(1)=2.
2, 3, 11, 19, 83, 1811, 2027, 2243, 2251, 2467, 2531, 2539, 3539, 3547, 4547, 5059, 10891, 12619, 13619, 13627, 13691, 13907, 14419, 155027, 155539, 156539, 157051, 267643, 268643, 270371, 270379, 270443, 270451, 270667, 276499, 277499, 280243, 281243, 281251
Offset: 1
Keywords
Examples
a(2) = 3 because 3 - a(1) = 1^3. a(3) = 11 because 11 - a(2) = 2^3, while neither 5 - 3 nor 7 - 3 is a cube.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A073609.
Programs
-
Mathematica
p = 3; s = Join[{2, 3}, Table[x = 2; While[!PrimeQ[q = p + x^3], x = x + 2]; p = q, {29}]] (* Zak Seidov, Apr 08 2013 *) nxt[a_]:=Module[{p=NextPrime[a]},While[!IntegerQ[CubeRoot[p-a]],p=NextPrime[p]];p]; NestList[nxt,2,40] (* Harvey P. Dale, Aug 13 2025 *)