cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076247 Trajectory of 1059774 under the Reverse and Add! operation carried out in base 4, written in base 10.

Original entry on oeis.org

1059774, 4187583, 8355006, 20822715, 83391660, 144328605, 268919295, 1339676160, 1349598705, 2683144950, 5361370860, 9358549725, 17380163775, 85563883200, 89574690225, 173801637750, 343262166720, 359352580785
Offset: 0

Views

Author

Klaus Brockhaus, Oct 03 2002

Keywords

Comments

1059774 = A075421(1096) is the fourth term of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below. - The generating function given describes the sequence from a(16) onward; the g.f. for the complete sequence is known but nearly twice as big.

Examples

			1059774 (decimal) = 10002232332 -> 10002232332 + 23323220001 = 33332112333 = 4187583 (decimal).
		

Crossrefs

Programs

  • Mathematica
    NestWhileList[# + IntegerReverse[#, 4] &, 1059774,  # !=
    IntegerReverse[#, 4] &, 1, 23] (* Robert Price, Oct 18 2019 *)
  • PARI
    {m=1059774; stop=19; c=0; while(c0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}

Formula

a(0), ..., a(15) as above; for n > 15 and n = 4 (mod 6): a(n) = 5*4^(2*k+12)-5237765*4^k where k = (n+2)/6; n = 5 (mod 6): a(n) = 5*4^(2*k+12)+246174955*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 10*4^(2*k+12)+157132950*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 20*4^(2*k+12)-20951060*4^k where k = (n-1)/6; n = 2 (mod 6): a(n) = 20*4^(2*k+12)+230461660*4^k-15 where k = (n-2)/6; n = 3 (mod 6): a(n) = 40*4^(2*k+12)+125706360*4^k-10 where k = (n-3)/6. G.f.: -15*(185397326496*x^11+95559181296*x^10+91268404224*x^9-183251937960*x^8-92341098492*x^7 -91268404224*x^6-48628806952*x^5-27174921532*x^4-22884144448*x^3+46483418410*x^2 +23956838719*x+22884144448)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))