A076247 Trajectory of 1059774 under the Reverse and Add! operation carried out in base 4, written in base 10.
1059774, 4187583, 8355006, 20822715, 83391660, 144328605, 268919295, 1339676160, 1349598705, 2683144950, 5361370860, 9358549725, 17380163775, 85563883200, 89574690225, 173801637750, 343262166720, 359352580785
Offset: 0
Examples
1059774 (decimal) = 10002232332 -> 10002232332 + 23323220001 = 33332112333 = 4187583 (decimal).
Links
Programs
-
Mathematica
NestWhileList[# + IntegerReverse[#, 4] &, 1059774, # != IntegerReverse[#, 4] &, 1, 23] (* Robert Price, Oct 18 2019 *)
-
PARI
{m=1059774; stop=19; c=0; while(c
0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}
Formula
a(0), ..., a(15) as above; for n > 15 and n = 4 (mod 6): a(n) = 5*4^(2*k+12)-5237765*4^k where k = (n+2)/6; n = 5 (mod 6): a(n) = 5*4^(2*k+12)+246174955*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 10*4^(2*k+12)+157132950*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 20*4^(2*k+12)-20951060*4^k where k = (n-1)/6; n = 2 (mod 6): a(n) = 20*4^(2*k+12)+230461660*4^k-15 where k = (n-2)/6; n = 3 (mod 6): a(n) = 40*4^(2*k+12)+125706360*4^k-10 where k = (n-3)/6. G.f.: -15*(185397326496*x^11+95559181296*x^10+91268404224*x^9-183251937960*x^8-92341098492*x^7 -91268404224*x^6-48628806952*x^5-27174921532*x^4-22884144448*x^3+46483418410*x^2 +23956838719*x+22884144448)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))
Comments