cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076248 Trajectory of 1059831 under the Reverse and Add! operation carried out in base 4, written in base 10.

Original entry on oeis.org

1059831, 4728312, 7831065, 14433270, 24913965, 56412450, 92165625, 208908750, 396926625, 710289750, 1336954560, 1398889905, 2715199350, 5363547840, 5614238385, 10894222710, 21453945600, 21701687025, 43073052150
Offset: 0

Views

Author

Klaus Brockhaus, Oct 03 2002

Keywords

Comments

1059831 = A075421(1105 ) is the fifth term of A075421 whose base 4 trajectory provably does not contain a palindrome. A proof along the lines of Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2, can be based on the formula given below.

Examples

			1059831 (decimal) = 10002233313 -> 10002233313 + 31333220001 = 102002113320 = 4728312 (decimal).
		

Crossrefs

Programs

  • Mathematica
    NestWhileList[# + IntegerReverse[#, 4] &, 1059831,  # != IntegerReverse[ #, 4] &, 1, 23] (* Robert Price, Oct 19 2019 *)
  • PARI
    {m=1059831; stop=19; c=0; while(c0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}

Formula

a(0), ..., a(7) as above; for n > 7 and n = 2 (mod 6): a(n) = 5*4^(2*k+9)+3836395*4^k-15 where k = (n+4)/6; n = 3 (mod 6): a(n) = 10*4^(2*k+9)+2450070*4^k-10 where k = (n+3)/6; n = 4 (mod 6): a(n) = 20*4^(2*k+9)-326420*4^k where k = (n+2)/6; n = 5 (mod 6): a(n) = 20*4^(2*k+9)+3544540*4^k-15 where k = (n+1)/6; n = 0 (mod 6): a(n) = 40*4^(2*k+9)+1927800*4^k-10 where k = n/6; n = 1 (mod 6): a(n) = 80*4^(2*k+9)-322580*4^k where k = (n-1)/6. G.f.: -3*(668508000*x^19+444361200*x^18+222142800*x^17-528080680*x^16-356464620*x^15 -125753060*x^14-299532884*x^13-188180432*x^12-143040640*x^11+128992350*x^10+90219415*x^9 +38288125*x^8+28112975*x^7+6666425*x^6+5752375*x^5+424135*x^4+3044705*x^3+2610355*x^2 + 1576104*x+353277)/((x-1)*(x^2+x+1)*(2*x^3-1)*(2*x^3+1)*(4*x^3-1))