A076252 Integers k such that omega(k) = omega(k-1) + omega(k-2) + omega(k-3), where omega(n) is the number of distinct prime factors of n.
2310, 3990, 4290, 6090, 6270, 10010, 11550, 12810, 13650, 17094, 17940, 18270, 19380, 21930, 22110, 22770, 23100, 24990, 25410, 27300, 28644, 30090, 32214, 32604, 34034, 34314, 35340, 35880, 37310, 38190, 38570, 38640, 39270, 39780
Offset: 1
Keywords
Examples
omega(2310) = 5 = 1 + 2 + 2 = omega(2309) + omega(2308) + omega(2307), so 2310 belongs to the sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
omega[n_] := Length[FactorInteger[n]]; a = {}; Do[If[omega[n] == omega[n - 1] + omega[n - 2] + omega[n - 3], a = Append[a, n]], {n, 1, 10^5}]; a Flatten[Position[Partition[PrimeNu[Range[40000]],4,1],?(#[[4]] == Total[ Take[ #,3]]&), {1}, Heads->False]]+3 (* _Harvey P. Dale, Oct 31 2016 *)