cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A076251 Numbers m such that omega(m) = omega(m-1) + omega(m-2), where omega(m) is the number of distinct prime factors of m.

Original entry on oeis.org

3, 6, 10, 18, 30, 33, 42, 60, 66, 84, 90, 102, 105, 110, 114, 126, 129, 130, 138, 150, 165, 168, 174, 180, 195, 198, 210, 228, 234, 252, 264, 270, 273, 285, 290, 294, 315, 318, 330, 345, 348, 354, 360, 385, 399, 402, 420, 434, 450, 462, 465, 468, 480, 504
Offset: 1

Views

Author

Joseph L. Pe, Nov 04 2002

Keywords

Examples

			omega(18) = 2 = 1 + 1 = omega(17) + omega(16), so 18 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    omega[n_] := Length[FactorInteger[n]]; Select[Range[3, 10^3], omega[ # ] == omega[ # - 1] + omega[ # - 2] &]
  • PARI
    lista(kmax) = {my(o1 = omega(1), o2 = omega(2), o3); for(k = 3, kmax, o3 = omega(k); if(o3 == o1 + o2, print1(k, ", ")); o1 = o2; o2 = o3);} \\ Amiram Eldar, Sep 18 2024

A076253 a(n) = the least positive integer solution of the "n-th omega recurrence" omega(k) = omega(k-1) + ... + omega(k-n), if such k exists; = 0 otherwise. (omega(n) denotes the number of distinct prime factors of n.)

Original entry on oeis.org

3, 3, 2310, 746130, 601380780, 89419589469210, 489423552293946270
Offset: 1

Views

Author

Joseph L. Pe, Nov 04 2002

Keywords

Comments

Question: Is a(n) > 0 for all n, i.e. can the n-th omega recurrence be solved for all n?
Note that 601380780 is not squarefree. Using primorials, I easily found candidates up to a(8). - Lambert Klasen (lambert.klasen(AT)gmx.net), Nov 05 2005

Examples

			k=3 is the smallest solution of omega(k)=omega(k-1), so a(1)=3.
k=3 is the smallest solution of omega(k)=omega(k-1)+omega(k-2), so a(2)=3.
k=2310 is the smallest solution of omega(k)=omega(k-1)+omega(k-2)+omega(k-3), so a(3)=2310.
		

Crossrefs

Programs

  • Mathematica
    (*code to find a(4)*) omega[n_] := Length[FactorInteger[n]]; ub = 2*10^6; For[i = 2, i <= ub, i++, a[i] = omega[i]]; start = 5; For[j = start, j <= ub, j++, If[a[j] == a[j - 1] + a[j - 2] + a[j - 3] + a[j - 4], Print[j]]]
  • PARI
    /* find a(5) */ v=[0,0,0,0,0]; s=0;for(i=1,5,v[i]=omega(i);s+=v[I])
    for(i=6,10^10,o=omega(i);if(o==s,print(i);break);s-=v[i%5+1];s+=o;v[i%5+1]=o) \\ Lambert Klasen (lambert.klasen(AT)gmx.net), Nov 05 2005

Extensions

a(5) from Lambert Klasen (lambert.klasen(AT)gmx.net), Nov 05 2005
a(6)-a(7) from Donovan Johnson, Feb 07 2009
Showing 1-2 of 2 results.