cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A076251 Numbers m such that omega(m) = omega(m-1) + omega(m-2), where omega(m) is the number of distinct prime factors of m.

Original entry on oeis.org

3, 6, 10, 18, 30, 33, 42, 60, 66, 84, 90, 102, 105, 110, 114, 126, 129, 130, 138, 150, 165, 168, 174, 180, 195, 198, 210, 228, 234, 252, 264, 270, 273, 285, 290, 294, 315, 318, 330, 345, 348, 354, 360, 385, 399, 402, 420, 434, 450, 462, 465, 468, 480, 504
Offset: 1

Views

Author

Joseph L. Pe, Nov 04 2002

Keywords

Examples

			omega(18) = 2 = 1 + 1 = omega(17) + omega(16), so 18 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    omega[n_] := Length[FactorInteger[n]]; Select[Range[3, 10^3], omega[ # ] == omega[ # - 1] + omega[ # - 2] &]
  • PARI
    lista(kmax) = {my(o1 = omega(1), o2 = omega(2), o3); for(k = 3, kmax, o3 = omega(k); if(o3 == o1 + o2, print1(k, ", ")); o1 = o2; o2 = o3);} \\ Amiram Eldar, Sep 18 2024

A076252 Integers k such that omega(k) = omega(k-1) + omega(k-2) + omega(k-3), where omega(n) is the number of distinct prime factors of n.

Original entry on oeis.org

2310, 3990, 4290, 6090, 6270, 10010, 11550, 12810, 13650, 17094, 17940, 18270, 19380, 21930, 22110, 22770, 23100, 24990, 25410, 27300, 28644, 30090, 32214, 32604, 34034, 34314, 35340, 35880, 37310, 38190, 38570, 38640, 39270, 39780
Offset: 1

Views

Author

Joseph L. Pe, Nov 04 2002

Keywords

Examples

			omega(2310) = 5 = 1 + 2 + 2 = omega(2309) + omega(2308) + omega(2307), so 2310 belongs to the sequence.
		

Crossrefs

Programs

Showing 1-2 of 2 results.