cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076302 Triangle T(n,k) = number of k-smooth divisors of n, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 3, 3, 3, 1, 1, 1, 1, 2, 1, 2, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2, 1, 4, 4, 4, 4, 4, 4, 4, 1, 1, 3, 3, 3, 3, 3, 3, 3, 1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2003

Keywords

Examples

			Triangle begins:
                   1
                 1   2
               1   1   2
             1   3   3   3
           1   1   1   1   2
         1   2   4   4   4   4
       1   1   1   1   1   1   2
     1   4   4   4   4   4   4   4
   1   1   3   3   3   3   3   3   3
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Times@@(IntegerExponent[n, #]+1& /@ Select[Range[2, k], PrimeQ]);
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 15 2021 *)

Formula

T(n,n) = A000005(n);
T(n,2) = A001511(n) for n>1.
T(n,3) = A072078(n) for n>2.
T(n,5) = A355583(n) for n>4.
Limit_{m->oo} (1/m) * Sum_{n=k..m} T(n,k) = 1/Product_{p prime <= k} (1 - 1/p). - Amiram Eldar, Apr 17 2025