A076302 Triangle T(n,k) = number of k-smooth divisors of n, read by rows.
1, 1, 2, 1, 1, 2, 1, 3, 3, 3, 1, 1, 1, 1, 2, 1, 2, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2, 1, 4, 4, 4, 4, 4, 4, 4, 1, 1, 3, 3, 3, 3, 3, 3, 3, 1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1
Examples
Triangle begins: 1 1 2 1 1 2 1 3 3 3 1 1 1 1 2 1 2 4 4 4 4 1 1 1 1 1 1 2 1 4 4 4 4 4 4 4 1 1 3 3 3 3 3 3 3
Links
- Eric Weisstein's World of Mathematics, Divisor Function.
- Eric Weisstein's World of Mathematics, Smooth Number.
Programs
-
Mathematica
T[n_, k_] := Times@@(IntegerExponent[n, #]+1& /@ Select[Range[2, k], PrimeQ]); Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 15 2021 *)
Formula
T(n,n) = A000005(n);
T(n,2) = A001511(n) for n>1.
T(n,3) = A072078(n) for n>2.
T(n,5) = A355583(n) for n>4.
Limit_{m->oo} (1/m) * Sum_{n=k..m} T(n,k) = 1/Product_{p prime <= k} (1 - 1/p). - Amiram Eldar, Apr 17 2025