cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076314 a(n) = floor(n/10) + (n mod 10).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

For n<100 this is equal to the digital sum of n (see A007953). - Hieronymus Fischer, Jun 17 2007

Examples

			a(15) = floor(15 / 10) + (15 mod 10) = 1 + 5 = 6. - _Indranil Ghosh_, Feb 13 2017
		

Crossrefs

Programs

Formula

From Hieronymus Fischer, Jun 17 2007: (Start)
a(n) = n - 9*floor(n/10).
a(n) = (n + 9*(n mod 10))/10.
a(n) = n - 9*A002266(A004526(n)) = n - 9*A004526(A002266(n)).
a(n) = (n + 9*A010879(n))/10.
a(n) = (n + 9*A000035(n) + 18*A010874(A004526(n)))/10.
a(n) = (n + 9*A010874(n) + 45*A000035(A002266(n)))/10.
G.f.: x*(8*x^10 - 9*x^9 + 1)/((1 - x^10)*(1 - x)^2). (End)
a(n) = A033930(n) for 1 <= n < 100. - R. J. Mathar, Sep 21 2008
a(n) = +a(n-1) + a(n-10) - a(n-11). - R. J. Mathar, Feb 20 2011