A076314 a(n) = floor(n/10) + (n mod 10).
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14
Offset: 0
Examples
a(15) = floor(15 / 10) + (15 mod 10) = 1 + 5 = 6. - _Indranil Ghosh_, Feb 13 2017
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
Programs
-
Haskell
a076314 = uncurry (+) . flip divMod 10 -- Reinhard Zumkeller, Jun 01 2013
-
Magma
[n-9*Floor(n/10):n in [0..100]]; // Vincenzo Librandi, Dec 10 2016
-
Mathematica
Table[n - 9 Floor[n / 10], {n, 0, 100}] (* Vincenzo Librandi Dec 10 2016 *)
-
PARI
a(n)=n\10+n%10 \\ Charles R Greathouse IV, Sep 24 2015
-
Python
def A076314(n): return (n/10)+(n%10) # Indranil Ghosh, Feb 13 2017
Formula
From Hieronymus Fischer, Jun 17 2007: (Start)
a(n) = n - 9*floor(n/10).
a(n) = (n + 9*(n mod 10))/10.
a(n) = (n + 9*A010879(n))/10.
G.f.: x*(8*x^10 - 9*x^9 + 1)/((1 - x^10)*(1 - x)^2). (End)
a(n) = A033930(n) for 1 <= n < 100. - R. J. Mathar, Sep 21 2008
a(n) = +a(n-1) + a(n-10) - a(n-11). - R. J. Mathar, Feb 20 2011
Comments