A076342 a(n) = A076340(A000040(n)), real part of primes mapped as defined in A076340, A076341.
2, 4, 4, 8, 12, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 60, 60, 68, 72, 72, 80, 84, 88, 96, 100, 104, 108, 108, 112, 128, 132, 136, 140, 148, 152, 156, 164, 168, 172, 180, 180, 192, 192, 196, 200, 212, 224, 228, 228, 232, 240, 240, 252, 256, 264, 268, 272
Offset: 1
Examples
A000040(11)=31=(32-1) -> (32,-1), therefore a(11)=32 and A070750(11)=-1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local p; p:= ithprime(n); if p mod 4 = 1 then p-1 elif p mod 4 = 3 then p+1 else 2 fi end proc: map(f, [$1..100]); # Robert Israel, Dec 26 2016
-
Mathematica
a[1] = 2; a[n_] := With[{p = Prime[n]}, p - JacobiSymbol[-1, p]]; Array[a, 60] (* Jean-François Alcover, Feb 01 2018, after Lekraj Beedassy *) a[n_] := Prime[n] - 2 + Mod[Prime[n], 4]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)
Formula
a(n) = p-(-1/p) = p+(-1)^{(p+1)/2} for an odd prime p. {(a/b) stands for the value of the Legendre symbol}. - Lekraj Beedassy, Oct 22 2004
From Amiram Eldar, Dec 24 2022: (Start)
Product_{n>=1} a(n)/prime(n) = 4/Pi (A088538). (End)
Comments