cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076342 a(n) = A076340(A000040(n)), real part of primes mapped as defined in A076340, A076341.

Original entry on oeis.org

2, 4, 4, 8, 12, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 60, 60, 68, 72, 72, 80, 84, 88, 96, 100, 104, 108, 108, 112, 128, 132, 136, 140, 148, 152, 156, 164, 168, 172, 180, 180, 192, 192, 196, 200, 212, 224, 228, 228, 232, 240, 240, 252, 256, 264, 268, 272
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 08 2002

Keywords

Comments

By definition of the map defined in A076340, A076341: 2->(2,0) and p->((floor(p/4)+floor((p mod 4)/2))*4,2-(p mod 4)) for odd primes p.
Number of solutions to x^2 + y^2 = 1 (mod p). - Lekraj Beedassy, Oct 22 2004

Examples

			A000040(11)=31=(32-1) -> (32,-1), therefore a(11)=32 and A070750(11)=-1.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local p;
      p:= ithprime(n);
      if p mod 4 = 1 then p-1 elif p mod 4 = 3 then p+1 else 2 fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 26 2016
  • Mathematica
    a[1] = 2; a[n_] := With[{p = Prime[n]}, p - JacobiSymbol[-1, p]]; Array[a, 60] (* Jean-François Alcover, Feb 01 2018, after Lekraj Beedassy *)
    a[n_] := Prime[n] - 2 + Mod[Prime[n], 4]; Array[a, 100] (* Amiram Eldar, Dec 24 2022 *)

Formula

a(n) = p-(-1/p) = p+(-1)^{(p+1)/2} for an odd prime p. {(a/b) stands for the value of the Legendre symbol}. - Lekraj Beedassy, Oct 22 2004
From Amiram Eldar, Dec 24 2022: (Start)
a(n) = A000040(n) - A070750(n).
a(n) = A100484(n) - A082542(n).
Product_{n>=1} a(n)/prime(n) = 4/Pi (A088538). (End)