A076393 Decimal expansion of Vardi constant arising in the Sylvester sequence.
1, 2, 6, 4, 0, 8, 4, 7, 3, 5, 3, 0, 5, 3, 0, 1, 1, 1, 3, 0, 7, 9, 5, 9, 9, 5, 8, 4, 1, 6, 4, 6, 6, 9, 4, 9, 1, 1, 1, 4, 5, 6, 0, 1, 7, 9, 2, 0, 9, 0, 6, 5, 5, 3, 3, 1, 5, 3, 4, 5, 6, 4, 1, 9, 9, 0, 7, 7, 5, 9, 0, 1, 6, 3, 6, 2, 9, 5, 1, 6, 0, 1, 4, 2, 2, 6, 3, 9, 0, 9, 2, 6, 8, 3, 9, 8, 5, 1, 5, 0, 4, 8, 0, 3, 3
Offset: 1
Examples
1.26408473530530111307959958416466949111456...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 443-448.
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, exercise 4.37, p. 518.
- Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesley, 1991, pp. 82-89.
Links
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Matthew Brendan Crawford, On the Number of Representations of One as the Sum of Unit Fractions, Master's Thesis, Virginia Polytechnic Institute and State University (2019).
- A. Dubickas, Transcendency of some constants related to integer sequences of polynomial iterations, Ramanujan J, Vol. 57, 2022, pp. 569-581.
- Steven Finch, Exercises in Iterational Asymptotics, arXiv:2411.16062 [math.NT], 2024. See p. 10.
- Zheng Li and Quanyu Tang, On a conjecture of Erdős and Graham about the Sylvester's sequence, arXiv:2503.12277 [math.NT], 2025. See p. 3.
- Benjamin Nill, Volume and lattice points of reflexive simplices, Discrete & Computational Geometry, Vol. 37, No. 2 (2007), pp. 301-320; arXiv preprint, arXiv:math/0412480 [math.AG], 2004-2007.
- Eric Weisstein's World of Mathematics, Sylvester's Sequence.
Crossrefs
Cf. A000058.
Programs
-
Mathematica
digits = 105; For[c = 2; olds = -1; s = 0; j = 1, RealDigits[olds, 10, digits+5] != RealDigits[s, 10, digits+5], j++; c = c^2-c+1, olds = s; s = s + 2^(-j-1)*Log[1+(2*c-1)^-2] // N[#, digits+5]&]; chi = Sqrt[6]/2*Exp[s]; RealDigits[chi, 10, digits] // First (* Jean-François Alcover, Jun 05 2014 *)
Formula
Equals lim_{n->oo} A000058(n)^(1/2^(n+1)). - Robert FERREOL, Feb 15 2019
Equals sqrt((3/2) * Product_{k>=0} (1 + 1/(2*A000058(k)-1)^2)^(1/2^(k+1))). - Amiram Eldar, Jun 22 2021
Comments