A076400 Number of divisors of n-th perfect power.
1, 3, 4, 3, 5, 3, 4, 6, 9, 3, 7, 5, 9, 3, 4, 8, 15, 3, 9, 16, 9, 6, 9, 3, 15, 4, 3, 15, 9, 9, 10, 3, 21, 5, 9, 7, 15, 3, 27, 3, 16, 11, 9, 9, 9, 25, 4, 3, 9, 9, 21, 3, 28, 27, 3, 15, 15, 12, 9, 8, 4, 3, 27, 5, 15, 9, 15, 16, 3, 21, 9, 6, 21, 9, 9, 16, 3, 45, 3, 9, 15, 13, 9, 27, 3, 15, 9, 27, 4
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Perfect Powers.
- Eric Weisstein's World of Mathematics, Divisor Function.
Programs
-
Mathematica
DivisorSigma[0, {1}~Join~Select[Range[5000], GCD @@ FactorInteger[#][[All, -1]] > 1 &]] (* Michael De Vlieger, Dec 16 2021 *)
-
Python
from sympy import mobius, integer_nthroot, divisor_count def A076400(n): def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return int(divisor_count(kmax)) # Chai Wah Wu, Aug 14 2024