A076405 Next perfect power having the same least root of n-th perfect power, A001597.
1, 8, 16, 27, 32, 125, 81, 64, 216, 343, 128, 243, 1000, 1331, 625, 256, 1728, 2197, 2744, 1296, 3375, 729, 512, 4913, 5832, 2401, 6859, 8000, 9261, 10648, 1024, 12167, 13824, 3125, 17576, 2187, 21952, 24389, 27000, 29791, 10000, 2048, 35937, 39304
Offset: 1
Keywords
Examples
. n | A001597(n) | A025478(n)^A025479(n) | a(n) . -----+------------+-----------------------+--------------------------- . 13 | 100 | 10^2 | 1000 = 10^3 = A001597(41) . 14 | 121 | 11^2 | 1331 = 11^3 = A001597(47) . 15 | 125 | 5^3 | 625 = 5^4 = A001597(34) . 16 | 128 | 2^7 | 256 = 2^8 = A001597(23) . 17 | 144 | 12^2 | 1728 = 12^3 = A001597(54).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Perfect Powers.
Crossrefs
Cf. A052410.
Programs
-
Haskell
a076405 n = a076405_list !! (n-1) a076405_list = 1 : f (tail $ zip a001597_list a025478_list) where f ((p, r) : us) = g us where g ((q, r') : vs) = if r' == r then q : f us else g vs -- Reinhard Zumkeller, Mar 11 2014
-
Mathematica
ppQ[n_] := GCD @@ Last /@ FactorInteger@# > 1; f[n_] := Block[{fi = Transpose@ FactorInteger@ n}, fi2 = fi[[2]]; Times @@ (fi[[1]]^(fi[[2]] (1 + 1/GCD @@ fi[[2]])))]; lst = Join[{1}, Select[ Range@ 1848, ppQ@# &]]; f /@ lst (* Robert G. Wilson v, Aug 03 2008 *)
-
Python
from math import gcd from sympy import mobius, integer_nthroot, factorint def A076405(n): if n == 1: return 1 def f(x): return int(n-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax*integer_nthroot(kmax, gcd(*factorint(kmax).values()))[0] # Chai Wah Wu, Aug 13 2024
Extensions
More terms from Robert G. Wilson v, Aug 03 2008
Comments