cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076427 Number of solutions to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1.

Original entry on oeis.org

1, 1, 2, 3, 2, 0, 5, 3, 4, 1, 4, 2, 3, 0, 3, 3, 7, 3, 5, 2, 2, 2, 4, 5, 2, 3, 3, 7, 1, 1, 2, 4, 2, 0, 3, 2, 3, 1, 4, 4, 3, 0, 1, 3, 4, 1, 6, 4, 3, 0, 2, 1, 2, 2, 3, 4, 3, 0, 1, 4, 2, 0, 4, 4, 4, 0, 2, 5, 2, 0, 4, 4, 6, 2, 3, 3, 2, 0, 4, 4, 4, 0, 2, 2, 2, 0, 3, 3, 6, 0, 3, 4, 4, 2, 4, 5, 3, 2, 4, 10
Offset: 1

Views

Author

T. D. Noe, Oct 11 2002

Keywords

Comments

This is the classic Diophantine equation of S. S. Pillai, who conjectured that there are only a finite number of solutions for each n. A generalization of Catalan's conjecture that a^x-b^y=1 has only one solution. For n <=100, a total of 274 solutions were found for perfect powers less than 10^12. No additional solutions were found for perfect powers < 10^18.

Examples

			a(4)=3 because there are 3 solutions: 4 = 2^3 - 2^2 = 6^2 - 2^5 = 5^3 - 11^2.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D9.
  • T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge University Press, 1986.

Crossrefs